Bringing the cloud closer to the edge

Arjmand Samuel
Edge Engineering lead
Microsoft Azure IoT
Customers and Partners are already transforming their industries

Steelcase
“43 percent of workers do not think their office is a great place to do creative work.” With IoT in the work environment, people can tell organizations what spaces are successful and why.

Rac
Reduced its accident rate by 25% and fuel usage by 20%, reporting annual savings of $1.8 million.

CBRE
CBRE 360 mobile apps allows users to locate colleagues, navigate the workplace and reserve workspaces, and access food and beverage as well as basic building and concierge services.

Thyssenkrupp
Data from sensors and systems to create valuable business intelligence and reduce downtime by 50%.

HERSHEY’S
Licorice extruders on Twizzler’s production line are performing at peak optimization, saving over $500K/year on materials alone.

ROLLS-ROYCE
Rolls Royce “power by the hour” model provides maximize availability by cutting fuel consumption by 1% and up to $250,000 per plane, per year.

Kohler
Kohler Konnect allows consumers to personalize their bath and kitchen experiences and automate everyday tasks.

Finnings CAT
Enabled customers to transport more than 1M additional tons of cargo, and reduce fuel consumption by 17%.

Johnson Controls
Connected chillers are back online 9x faster than unconnected equipment, avoiding more than $300,000 in hourly downtime costs.
IoT Application pattern

- Things
- Cloud Gateway
- Insights
- Actions
IoT Application pattern + Edge

- Things
- Cloud Gateway
- Insights
- Actions
IoT in the Cloud and on the Edge

IoT in the Cloud
- Remote monitoring and management
- Merging remote data from multiple IoT devices
- Infinite compute and storage to train machine learning and other advanced AI tools

IoT on the Edge
- Offline operations
- Privacy of data and protection of IP
- Pre-process data On-Prem, e.g., video streams
- Near real-time response, e.g., low latency control loops
- Protocol translation & data normalization
Edge in action – Low latency control loops based on machine intelligence
Today’s SCADA solution

Well site

SMS/email alert

Supervision site

$\text{Supervision site} \xrightarrow{\text{SMS/email alert}} \text{Well site} \xrightarrow{\text{Well site}} \text{Supervision site}
IoT Edge and ML in action

Replaying pump readings

Well site

Azure IoT Edge

Azure IoT Hub
Edge in action - Real-time artificial intelligence on the Edge

DJI M210 with **payload** running Azure IoT Edge
Many use cases for drones with local Computer Vision capabilities

Infrastructure inspection

Agriculture

Surveillance
Push AI workloads to any DJI drones with IoT Edge

From base station

Onflight

DJI Mavic Air

DJI Matrice M210
Azure IoT Edge Deployment
Cognitive Services Vision

Drone Video Camera

IoT Edge Device (Drone)

Azure IoT Hub

Deployment Manifest

Docker Container

Custom Code (video collection)

Docker Container

Azure Cognitive Services (Custom Vision)

Docker Container

Custom Code (local display)

Azure Container Registry
AZURE IOT EDGE
ready for the enterprise
Azure IoT Edge

Key Features

- **OPEN**
 - Open source Azure IoT Edge
 - Moby-based container runtime, compatible with Docker containers
 - Cross platform on Linux and Windows
 - Azure Edge Marketplace for Edge modules

- **SECURE**
 - Zero-touch provisioning of Edge devices at scale with Device Provisioning Service
 - Security Manager for end to end security and support for variety of hardware-based root of trust
 - Ability to be completely offline for long periods of time

- **INTELLIGENT**
 - Services onboarded
 - Custom Vision
 - Azure Functions
 - Azure Stream Analytics
 - SQL Server of Edge
 - Azure Machine Learning

- **ENTERPRISE READY**
 - Scaled deployments with Automatic Device Management Service
 - Module SDKs in multiple languages (C, C#, Node, Python, Java)
 - Development tooling in VSCode
 - Multi-person development tools for CI/CD using VSTS
Secure
Provides a secure connection to the Azure IoT Edge, update software/firmware/configuration remotely, collect state and telemetry and monitor security of the device

Cloud managed
Enables rich management of Azure IoT Edge from Azure, provides a complete solution instead of just an SDK

Cross-platform
Enables Azure IoT Edge to target the most popular edge operating systems, such as Windows and Linux

Portable
Enables Dev/Test of edge workloads in the cloud with later deployment to the edge as part of a continuous integration / continuous deployment pipeline

Extensible
Enables seamless deployment of advanced capabilities such as AI from Microsoft, and any third party, today and tomorrow
A **module image** is a package containing the software that defines a module.

A **module instance** is the specific unit of computation running the module image on an IoT Edge device. The module instance is started by the IoT Edge runtime.

A **module identity** is a piece of information (including security credentials) stored in IoT Hub, that is associated to each module instance.

A **module twin** is a JSON document stored in IoT Hub, that contains state information for a module instance, including metadata, configurations, and conditions.

SDKs to develop custom modules in multiple languages (C#, C, Python, Java, Node.JS)
Installs and updates workloads on the device.
Maintains Azure IoT Edge security standards on the device.
Ensures that IoT Edge modules are always running.
Reports module health to the cloud for remote monitoring.
Facilitates communication between downstream leaf devices and the IoT Edge device.
Facilitates communication between modules on the IoT Edge device.
Facilitates communication between the IoT Edge device and the cloud.
Concept - Routing

FROM <source> WHERE <condition> INTO <sink>

Sources – source of messages
/messages/modules/{mid}/outputs/{out1}

Condition – expression on messages properties/body
sensorType = “temp” and alert = true

Sinks – destination for messages (endpoints)
$upstream
brokeredEndpoint("/modules/{mid}/inputs/{in1}")

For example:
FROM /messages/modules/mod1/outputs/*
WHERE sensorType = “temp”
INTO brokeredEndpoint("/modules/mod2/inputs/in1")

Query Language
Concept – Device Management

IoT Edge or device

Power plant

Elevators

Smart meters

Medical devices

IoT Hub

Schedule and broadcast Device twin changes across large fleets
IoT Edge in action

1. Edge device provisioned with right agents for scenario
2. Select Edge node to deploy to
3. Define modules on Edge node via device twin
4. Define message routes for modules on edge node via device twin
5. Define Module twins for module configurations (parameters)

IoT Hub
- Module Twin
- Device Twin

IoT Edge
- Container Modules
- Edge device with security requirements
- Rich OS – Linux or Windows
- Docker-compatible container management system

Device Twin
- Module Twin
- Device Provisioning
- Security Manager
- Hardware based root of trust

Container Modules
- Secure Boot
- Secure Storage

IoT Device with IoT Device SDK
- Connects to Edge Hub (Owns a device twin)

IoT Device (e.g. BLE)
- Connects to BLE Module for protocol translation (configured via BLE Module twin)

Automatic Device Management Service
- Container based workloads
- AI Services
- Azure Functions
- Azure Stream Analytics
- Azure Machine Learning
- Your own code using module SDK
Additional Security Threats at the Edge

The same tools and experience from other disciplines like failure analysis and patent research are easily repurposed for attacks.

Readily available tools and experience

Rich development environment

Heterogeneous hardware

Subject to physical analysis like on power and timing, and attacks based on micro-probing, fault injections, and environmental tampering.

Physical accessibility

Expands threat surface across architecture, vendor, and capabilities unlike a relatively more uniform datacenter hardware.

Non-standard security protocols

The necessary mixture of scripted and compiled software using many technologies to enrich user experience also increases the probability for vulnerabilities.

Proprietary hardware procedures for common security needs like secure hardware enforcements for secure boot and firmware updates precludes public scrutiny.

Requires assertive defense

Requires uniformity

A Framework for Ecosystem Managed Security

Principles

Protected General Computing
- Application execution with runtime integrity checking

Secure Execution Environment
- Privileged executions and systems resource access control

Secure Boot/Updates
- Bootstrapping and recovery

Hardware Root of Trust
- Trust anchor and tamper resistance

Realization

IoT Hub

Azure IoT Edge
- Secured OS

Azure IoT Edge Security Manager
- Tamper resistant hardware root of trust

Microsoft
- OS agnostic

Secure silicon hardware providers

IoT leaf devices
Azure IoT Edge *Device* Security Promises

What is the maximum protection you can expect if the device fell into wrong custody?

HSM PAL = Hardware Secure Module Platform Abstraction Layer
Enabling the intelligent edge spectrum

- Sensor Tier
- Constrained Tier
- Interactive Tier
- Industrial Tier
- Gateway Tier
- Accelerated Tier

LOW POWER CAPABILITIES

HIGH POWER CAPABILITIES

Azure IoT Edge hardware requirements
- Rich OS – Windows or Linux
- Flexible HW – ARM or x64
- Moby-compatible container runtime
- Hardware based security – HSM or Enclave
- Hardware sizing depends on workload
Extended Offline

- Indefinite offline operation after one-time sync with IoT Hub!
- Downstream IoT devices can connect to offline Edge device and queue messages for deferred cloud delivery - no code changes, just works!
- Edge + downstream devices can restart and reauthenticate when offline.
- Local Inter-device communication facilitated by Edge Runtime.
3rd parties can now publish IoT Edge modules into the marketplace!

- **Solution developers can save development effort**
 - Discover and integrate certified modules with peace of mind

- **Publishers can showcase their solutions with wide reach**
 - Extend your reach by going to market with Microsoft, a leader in IoT
 - Sign-up: aka.ms/iot-edge-marketplace-signup

- **Coming soon: monetization beyond BYOL**
 - Partners won’t need to create an expensive billing system
 - Customers will get one consolidated Azure bill
Azure IoT Edge certified devices

- Simplifying IoT solution development
 - All Azure IoT Edge certified devices comes with Azure IoT Edge **pre-installed**
 - Basic device management functionalities (reboot, FW updates) are validated

- All certified IoT Edge devices are featured
 - New landing page in device catalog features all certified IoT Edge devices

- Increasing momentum
 - There are 9 certified IoT Edge devices and more to come
 - To learn more about the program requirements, please visit http://aka.ms/certfaq
Edge computing research challenges

- **Scale**
 - Deploying a fleet of Edge devices with zero touch
 - Managing a fleet of Edge devices centrally
 - Adapting Edge workloads based on constraints (HW, cost, network, etc.)

- **Security**
 - Moving cloud workloads to on-prem Edge devices requires new security models
 - Securing not just the device, but also data, with provenance
 - Security models for a highly distributed occasionally connected devices

- **Operations**
 - High availability with low cost devices
 - Multi-vendor, multi-purpose devices – how to control and manage
 - Diverse hardware architectures, OSes, operating conditions
Finally...

- Deploy Azure services to Azure IoT Edge devices
- Deploy your own code in language of your choice
- Manage Azure IoT Edge and downstream devices
- Do all of this securely, in a scalable fashion from the Azure IoT Hub

Azure IoT Edge is free and open source
github.com/azure/iotedge
Thank you!