
Amino - A Distributed Runtime for Applications Running Dynamically Across
Device, Edge and Cloud

Ying Xiong, ying.xiong1@huawei.com; Donghui Zhuo, terry.zhuo@huawei.com; Sungwook Moon,
sungwook.moon@huawei.com; Michael Xie, Haibin.Michael.Xie@huawei.com; Isaac Ackerman,

isaac.ackerman@huawei.com Quinton Hoole, quinton.hoole@huawei.com;

Seattle Cloud Lab, Huawei R&D USA, Bellevue WA

ABSTRACT: This paper presents a framework and runtime
system, Amino, for developing and executing distributed
applications in highly dynamic computing environment
consisting of cloud resources, edge nodes and/or devices such
as phones and smart cameras. This work is based on Sapphire
[1] - a general-purpose distributed programming platform. In
Sapphire, application objects (called Sapphire Objects) run
inside kernel servers (KS), and Kernel server instance runs
on every device or cloud node. Between Kernel Server and
an application object is a layer called Deployment Manager
(DM). Inbound and outbound communications to/from
Sapphire objects will be intercepted and processed by
deployment managers. Each DM provides one specific
distributed system capabilities, e.g. caching, resource leasing,
replication, data partitioning etc. Developers selectively
choose DMs to manage Sapphire objects. As part of this work
(Amino), we re-implemented and extended Sapphire
platform to support Sapphire objects written in multiple
languages and to support attaching multiple DMs to a
Sapphire object for increased distribution capabilities.
Finally, in the work, we introduced a code offloading design
for dynamically moving application objects between devices
and cloud servers at runtime to optimize a user specified
objective, e.g. to reduce latency or to save energy
consumption.

KEYWORDS; Edge Computing, Distributed Systems, Cloud
Computing and Edge Programming Framework

I. INTRODUCTION

Edge computing is a new paradigm to provide computing
capabilities at the edge of internet in close proximity to
mobile users or devices. Unlike cloud computing which
consolidates computing capacity into datacenters, edge
computing drives computing toward decentralized
architecture, which presents runtime and management
challenges for distributed applications running across device,
edge and cloud.

Today, most distributed applications are designed with server
components running in cloud data center and client
components running on devices with. The separation between
server components and client components is introduced at

design phase and the design is “fixed”, in terms of which
component runs where (device, edge or cloud). As more
applications, such as AI, stream data analytics and IoT apps,
want to leverage computing resources both on the edge and
in the cloud, there is a need to dynamically schedule
application components to run at the right place at right time
to optimize the overall application performance and
availability. Building large scale and highly available
distributed applications is difficult. Developers are forced to
deal with complex distributed problems like concurrency,
partitioning, consistency, fault tolerance, etc. Building
distributed edge applications across device, edge and cloud is
even more challenging, due to the great variance of
underlying heterogeneous hardware, the higher device failure
rate, network instability and restricted resource constrains.

In this paper, we will introduce Amino, a distributed
runtime system built on top of Sapphire programming
framework [1] developed by the system group at University
of Washington. Amino provides a unified runtime layer across
device, edge and cloud. Application objects written in
different programming languages can run and communicate
each other on this layer. Amino uses GraalVM [2] to manage
multi-language objects. Precisely, Kernel Server in Amino
uses GraalVM Polyglot APIs to create, manage and invoke
multi-language objects. Supported languages include
JavaScript, Python, Ruby, JVM based languages such as Java,
Scala and Kotlin, and LLVM based languages such as C and
C++. Amino also provides a collection of built-in plugins
(DMs) for common distributed system tasks needed by an
application, such as fault-tolerance, code offloading, and
caching, etc. Developers choose plugins by specifying
policies to meet their distribution requirements. For example,
developers can enable code offloading on a face-detection
object by providing an offloading policy that contains
offloading conditions - when to run the face-detection object
on device and when to run the same object in the cloud. Amino
will monitor the application and perform offloading when
conditions are satisfied. Amino allows developers to focus on
business logics without dealing with complex distributed
systems problems which increases software quality and
development productivity.

361

2018 Third ACM/IEEE Symposium on Edge Computing

978-1-5386-9445-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SEC.2018.00046

II. RELATED WORKS

Application availability, state partitioning, replication, and
code offloading are problems that have been widely studied in
the field of distributed computing. Comparing with
conventional distributed application, the development of edge
applications faces extra challenges due to the issues of strict
resource constraints, network instability and great mobility of
edge servers and/or devices. This section tries to analyze and
summarize the related works with respect to distributed
programming model and unified runtime across edge devices,
edge servers and cloud resources.

Most of previous works focused on application task
partitioning and code offloading between devices and cloud
resources. Cuckoo [3] framework integrates Android
operating system service component with Eclipse
development tool to provide computation offloading for
smartphone applications. Cuckoo generates the stubs for
accessing service components, which are replaced by
invocations to the Cuckoo framework that decides, at run-
time, whether to run the service on the local device or a remote
implementation. However, Cuckoo does not provide unified
programming model for applications running cross edge
devices and cloud servers. It supports only Java on Android
smartphones and provides only offloading capability. It does
not provide a framework to solve complex distributed system
problems as a whole. Mobile Fog [4] is a high level
programming model for developing geographically
distributed, large-scale, and latency-sensitive applications. Its
goal is to allow applications to dynamically scale based on
their workload using on-demand resources in the fog (edge
nodes) and in the cloud. In Mobile Fog, an application consists
of distributed Mobile Fog processes that are mapped onto
distributed computing instances in the fog and cloud, as well
as various edge devices. While Mobile Fog programing model
simplifies the development on heterogeneous servers and
devices distributed over a wide area, it requires application
developers to partition their application components (Mobile
Fog processes) onto these devices and/or cloud instances, and
the partitioning is not dynamic at runtime. It also does not
solve other distributed system problems such as leader
selection, replication and caching. CloneCloud [5] offers
elastic execution framework at thread level between mobile
devices and cloud VMs. The strong point of CloneCloud is its
partitioning mechanism that combines a static analysis of the
code with a dynamic profiling of the application to pick the
optimal migration and re-integration points. The partitioning
is offline and pre-computed partitions are stored in a database.
At runtime, the distributed execution mechanism picks a
partition from the database and implements it via a small and
fast set of modifications of the executable before invocation.
The drawback of CloneCloud is that it still requires developers
to manage threads. Similar to others, CloneCloud is not
designed to solve distributed system problems other than
offloading. Finally, COMPSs [6] [7] [8], a programming
model for distributed computing and associated runtime,
provides a framework to develop and run your application
components across edge devices and cloud servers. COMPSs
considers applications as composites of invocations to pieces

of software encapsulated as methods called Core Elements
(CE). At execution time, calls to CE methods are transparently
replaced by asynchronous tasks whose execution is to be
orchestrated by the runtime system, fully exploiting the
available computing resources (local devices or remote nodes)
and guaranteeing the sequential consistency. On the other
hand, COMPSs also handles the distribution of data to provide
a seamless offloading and schedules the data processing in
larger nodes considering its locality to optimize the execution.
The main differences between COMPSs and Amino are that
Amino chooses objects as the software pieces that can be
instantiated on local devices, edge nodes or cloud servers at
runtime, and each object (called Sapphire object) can be
attached to one or more DM (Deployment Manager) for its
distributed capabilities. For example, if a Sapphire object is
attached to the high availability DM, Amino will create
multiple instances (replica) of the object at runtime on
different computing resources. The object state will be
synchronized among these instances, and if the primary object
instance crashes, one of the replica will be used for subsequent
method invocations on this object, thus, providing HA
capability to this object.

III. ARCHITETCURE AND PROGRAMMING MODEL

The base management unit in Amino distributed system is
Sapphire object shown as circles in Figure 1. Sapphire objects
are remotely accessible distributed objects. Developers first
build the application as a single object-oriented program with
their familiar OO programming model. They then break the
application into distributed components by declaring a set of
local objects to be Sapphire Objects.

Figure 1: Layered Architecture of Amino

The dots inside each Sapphire object represents local objects
with no remote invocation and distributed capabilities. The
solid arrow lines between dots are method invocations
between local objects. The dashed arrow lines between circles
are remote method invocations between Sapphire objects.
Methods on local objects can only be invoked locally by
objects residing on the same host. Sapphire objects however
may have remote methods which can be invoked by objects
residing on different hosts. To convert a local object to a
Sapphire object, a developer simply makes the class

362

implement the “SapphireObject” interface, as shown in
Listing 1 below:

Listing 1: Define a Sapphire Object

At runtime, Sapphire objects are managed by Kernel Server
and OMS for distribution and invocations. Kernel Server and
OMS are two important components in Amino architecture,
and are described in the next section.

A. Kernel Server, OMS and DM
Kernel Server provides runtime environment for Sapphire

objects. Each host runs a Kernel Server instance, which
exposes a set of remote API. Amino assumes that any Kernel
Server instance can invoke the remote API on any other
Kernel Server regardless where the instance lives. Object
Management Service (OMS) keeps track of the locations of
all Sapphire objects. Sapphire object must be created with a
special Sapphire helper method Sapphire.new_(). Upon
Sapphire object creation, the helper method will generate a
globally unique ID for the Sapphire object, and register the
object in OMS. OMS provides API to search Sapphire
objects. Given a Sapphire object ID, OMS can tell the IP of
the host on which the Sapphire object runs. Whenever a
Sapphire object is moved or deleted, OMS will be updated
accordingly.

OMS server contains a Kernel Object Manager which
keeps track of the mapping between kernel object ID to the
IP address of the kernel server in which the object runs. Given
a kernel object ID, a client can call OMS server to get the IP
of the host where the object runs. Kernel server contains an
object manager which keeps track of the mapping between
kernel object ID and the references of the object.

Figure 2 below depicts the design and interaction
between Kernel Server and OMS.

Figure 2: Kernel Server and OMS in Amino
Between Kernel Server and application Sapphire objects in
Amino architecture shown in Figure 1 is a layer called
Deployment Manager (DM). DMs provide distributed system
capabilities for Sapphire objects. To associate a DM to a
Sapphire object, simply specify the DM when defining the
object, as shown in the following Listing (Listing 2). In this
example, “TodoList” is a Sapphire object with one associated
DM(LoadBalanceMasterSlaveSyncPolicy). This makes
“TodoList” a highly available object at runtime, with one
primary instance (Master), and multiple replica (Slaves) for
HA. The DM and runtime takes care of monitoring master
and slave objects, syncing object states and promoting slave
to master once the master crashes.

Listing 2: Associate DM to A Sapphire Object

Every DM has three components: a proxy, an instance

manager, and a coordinator. When a user creates a Sapphire
object, he/she can associate a DM to the Sapphire object.
During the creation of the Sapphire object, Amino will inject
codes into the stub of the Sapphire object, in which case any
method invocation on the Sapphire object will first be
processed by the proxy, instance manager and the coordinator
of the DM before reaching the actual Sapphire object.
Multiple DMs can be associated to a Sapphire object and each
DM provides a specific distributed system functionality.
Most popular DMs are Scalability DM,
Transaction/Replication DM, Caching DM, and Offloading
DM, which will be discussed later in the paper.

Sapphire objects on different hosts communicate each
other through generated DM stub classes. Figure 3 below
describes the communication through Kernel Server.

Figure 3: Sapphire Object Communication through Kernel Server

363

B. Multi-Language Support
Cloud native applications are normally designed with

micro-service architecture, and are implemented in multiple
languages. Supporting Sapphire objects written in different
languages is a requirement for Amino project, for which, we
use open source GraalVM[2] technology to support multiple
languages for Sapphire objects. GraalVM provides the
virtualization layer representing programming languages,
allowing the execution of guest programming languages (for
Sapphire objects), namely JavaScript, Ruby, R, Python and
LLVM bit-code, in the same runtime as the host JVM-based
application. The host language and guest languages can
directly interoperate with each other and pass data back and
forth in the same memory space. In this section, we introduce
how we design and integrate GraalVM into Amino runtime
system. For details of GraalVM itself, please refer to the links
in reference section of this paper. Figure 4 describes the
design of GraalVM solution in Amino runtime, with an
example of an application written in Ruby invoking methods
on a Sapphire object written in JavaScript.

Both Kernel Server and OMS in the figure run inside
GraalVM. Kernel Server uses GraalVM Polyglot API to
create Sapphire objects written in multiple languages as
shown in step #4 in the diagram.

Figure 4: Multi-Language Support with GraalVM in Amino

When OMS creates and registers a Sapphire object written in
one of the supported languages, it creates a java stub for the
object, and passes the stub to the client as shown in step #5 in
the diagram. The end-to-end process in multi-language
support at execution time is like this:

1) Sapphire object provider calls OMS to register new
sapphire objects. Upon registration, sapphire object
provider needs to provide the name of the object,
the programming language in which the object is
written, and the artifact that contains the object
implementation.

2) OMS sends request to kernel server to trigger
sapphire object creation. Kernel server uses Graal
API to create object instance.

3) To use a sapphire object, an application needs to get
the stub of the sapphire object by querying OMS
with sapphire object name. Amino provides helper
classes in different programming languages to
assist developers in discovering sapphire objects
and retrieving sapphire object stubs.

4) Client (written in one language) invokes methods
on a stub (returned from OMS) to interact with the
sapphire object. Even though stubs are java classes,
they appear as Graal Value instances in non-java
applications and can be consumed directly by non-
java applications.

5) The Kernel Server on the client host intercepts the
method invocations on stubs and consults OMS to
determine the host where the actual Sapphire object
runs

6) The kernel Server serializes parameters into bytes
and makes a RMI call to the target Kernel Server
where the real object runs

7) The Kernel Server on the target host de-serializes
bytes back into parameters, looks up the Sapphire
object (written in another language), and invokes
the methods on the object via Graal API.

Please note that a) Kernel Server, OMS and all DMs are still
in Java; b) Sapphire objects can be written in different
languages, but corresponding stubs are in Java; c) Kernel
Server uses Graal API polyglot.eval() to create Sapphire
object instances, and saves sapphire object as Graal Value
instance (polyglot.Value) in Object Manager; and d) It is
possible for Object Manager to store server policies that refer
to the Graal value; e) Kernel Server uses Graal API
(polyglot.Value.getMembers(…).execute()) to invoke
methods on the Sapphire object.

IV. MULTIPLE DM CHAINING

As mentioned previously, Deployment Manager (DM) in
Amino provides distributed capabilities to Sapphire objects
through plugin mechanism. In Sapphire [1], only one DM can
be associated with a Sapphire object. In real world, it is
desirable to associate multiple DMs with one Sapphire object.
For example, Distributed Hashing Table (DHT) is a
deployment manager which provides request partition to
sapphire objects. Based on configurations, DHT is able to
maintain multiple instances of a sapphire object, and route
requests to one specific instance based on the hash value of
the request. Suppose we have a key value store class. By
applying DHT, we get a partitioned key value store which is
able to scale out smoothly with more instances when
workload increases. Consensus DM is a deployment manager
which provides fault tolerance to sapphire objects. When
Consensus DM is applied to a sapphire object, the DM will
automatically create three instances of the sapphire object,
use Raft protocol to keep them in consistent, and provides fail
over when one instance dies. By chaining DHT DM and
Consensus DM together, we can add both scalability and
availability on a stateful Sapphire object where DHT
provides horizontal scaling through partitioning and
Consensus DM provides fault tolerance. Similarly, we can
combine Retry DM and Load Balance DM together to
provide scalable at-least-once RPC support on a stateless
Sapphire object. The following diagram (Figure 5) illustrates

364

how multiple DMs work together. In this diagram, a client
DM can either talk to the client of another DM, or talk to the
stub of a server DM, and the last client DM will always talk
to the stub of its server DM. For this example, DM1.C talks to
DM2.C which is the client of DM2, but DM3.C talks to
DM3.S_Stub which is the stub of a server DM.

Figure 5: Multi DM Chaining Model

In the model illustrated in the diagram above, DMs on the
client side are chained together and DMs on the server side are
also chained together. The model allows Amino to support
many combinations of DMs where they make sense, e.g. Retry
plus Locking Transaction, LoadBalance plus Retry, etc.

V. DESIGN OF CODE OFFLOADING DM

Offloading is a promising way to improve performance as

well as reducing energy consumption by executing some parts
of the app on remote server. Published papers have shown that
code offloading to remote resources leads to energy
optimization and application performance. For Amino project,
we are implementing a DM specific to code offloading and
can be associated with Sapphire objects to be offloaded to
other devices or cloud servers. The work is still in process and
we started with the basic scenario that all Sapphire objects are
assume to belong to one application. The basic design is:

1) For each Sapphire object associated with offloading
DM, OMS generates client and server stubs that
calculate the execution time of each method
invocation on the object instance running on a given
host (edge device or cloud server), t(Object, host)

2) For each object invocation on a server from a client,
the generated DM stubs measure the latency and
bandwidth (transmit time) of the link between calling
client to the object host, l(object, client, host)

3) For each Sapphire object (configured with

Offloading DM) invocation, the generated server
DM stub measures the cpu, memory and IO resource
consumption as well as energy consumption on a
given host, r(object, host) = f(cpu, mem, disk io, network io)
and e(object, host) = f (r), where r() and e() are the
resource utilization and energy consumption of a
given object on a given host respectively.

4) Collected data from DM Stubs are sent to OMS for
offloading scheduling algorithm (Offloading
Scheduler),

5) For a given client and a set of Sapphire objects to be

invoked, offloading algorithm in OMS calculates the
offloading value for very host in Amino cluster:

(௜ݐݏ݋ܪ)ܸ = ෍൫ݐ൫ܱܾ݆௞,			ݐݏ݋ܪ௜൯ + ݈൫ܱܾ݆௞,			ݐ݈݊݁݅ܥ, ௜൯௡ݐݏ݋ܪ
௞ୀଵ + ݁(ܱܾ݆௞,			ݐݏ݋ܪ௜)൯

6) For a given sliding time windows, GroupPolicy DM

in OMS will make a decision where (which host) to
create and run the Sapphire object, based on the
values calculated for all hosts. The actual algorithm
will discussed in the future paper. The decision
making is based on past experience. If no data is
available, objects will run simultaneously on all hosts
(edge device or cloud server) to collect data needed.

. .

VI. EXPERIMENTS

As part of Amino project and for validating the Amino
architecture and design, we have ported a few applications
and executed them on Amoni runtime platform. In this
section, we describe two applications (Go Game and
License Plate Recognition) and show preliminary test
results.

A. Go Game
The first test application is Go Game, a Pachi open source

Go engine written in C++. The engine uses both algorithmic
and neural networks approaches to calculate moves. The skill
level of the Go engine is approximately amateur 1 duan. We
ported neural networks on the Android (previously running
on desktop only), and we “sapphirized” the game with a
Sapphire object for calculating the next move in the game.
The Sapphire object runs on the device by default. After a
few moves, Amino moved the object to run on cloud servers,
and we notice that the performance was 5 times faster than
the calculation on device. More importantly, the application
developer enjoyed code offloading capability provided by
Amino without writing any code.

B. License Plate Recognition
The second application is the OpenAlpr open source

engine written in C++ for license plate recognition, which is
a Sapphire object in our test. The Sapphire object is tested on
a host with the configuration shown in the Figure 6.

365

Figure 6: Hardware Configuration in Experiment

The application was installed and run on an Android phone,
and when the phone took a picture of a license plate, the
Sapphire object performed the license plate recognition
function. As a result, it displays a list of the recognized plates
with confidence levels. When the picture contains few license
plates, the recognition object run on the phone without
significant delay. When the picture contains more plates,
doing recognition on device becomes very slow, therefore
Amino moved the Sapphire object to a remote server in the
cloud to improve performance.

As shown in Figure 7 below, the same Sapphire object
can run on Kindle device, Android phone (Mate 9) and on the
AWS Cloud with different cost. The algorithm run time is the
highest on Kindler device due to resource constraints, while
the upload time is the highest on AWS Cloud, due to network
transmission. However, moving Sapphire object to the cloud
still results in best performance in license plate recognition.

Figure 7: Cost Breakdown on Different Hosts

VII. CONCLUSION, FUTUREWORK AND

ACKNOWLEDGMENT

We have presented a programming framework and
runtime system for distributed computing across device, edge
and cloud, based on original Sapphire platform. We re-
implemented, enhanced and extended the platform to support
multi-language and multi-DM for distributed Sapphire
objects. Our goal is to build the platform as commercial ready
product or service in our public cloud for real customer use
cases. Future work includes developing additional DMs and
robust offloading algorithm to further optimize the object
placement. We very much appreciate the help from System
group at UW, and special thanks to Dr. Irene Zhang for her
valuable support in this work.

REFERENCES.
[1] Irene Zhang, Adriana Szekeres, Dana Van Aken, and Isaac Ackerman,

“Customizable and Extensible Deployment for Mobile/Cloud
Applications” In the Proc. of the 11th USENIX Symposium 2014

[2] GraalVM, a high performance polyglot VM,
https://www.graalvm.org/; https://www.graalvm.org/docs/;
https://github.com/graalvm/

[3] Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: A Computation
Offloading Framework for Smartphones, pp. 59{79. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/978-
3-642-29336-8 4.

[4] Hong, K., Lillethun, D., Ramachandran, U., Ottenwalder, B.,
Koldehofe, B.: Mobile fog: A programming model for large-scale
applications on the internet of things. In: Proceedings of the Second
ACM SIGCOMM Workshop on Mobile Cloud Computing. pp. 15{20.
MCC '13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2491266.2491270.

[5] Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud:
Elastic execution between mobile device and cloud. In: Proceedings of
the Sixth Conference on Computer Systems. pp. 301{314. EuroSys '11,
ACM, New York, NY, USA (2011).

[6] Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo,
F., Lezzi, D., Sirvent, R., Talia, D., Badia, R.M.: Servicess: An
interoperable programming framework for the cloud. Journal of grid
computing 12(1), 67{91 (2014).

[7] Lordan, Francesc; Lezzi, Daniele; Ejarque, Jorge; Badia, Rosa : "An
architecture for programming distributed applications on Fog to Cloud
systems". Euro-Par 2017, Parallel Processing Workshops

[8] Rosa M. Badia, Javier Conejero, Carlos Diaz, Jorge Ejarque: "COMP
Superscalar, an interoperable programming framework", SoftwareX
Volumes 3–4, December 201

366

