
Demo: Managing Sensing Resources at the Edge
using Cloud OSes

Lirim Osmani,∗ Ashwin Rao,∗ Samu Varjonen,∗ Eemil Lagerspetz,∗ Hannu Flinck,† and Sasu Tarkoma∗
∗University of Helsinki, †Nokia Bell Labs

I. INTRODUCTION

Environmental sensing is an important use case for edge
computing and mobile networks. Specifically, edge computing
approaches and mobile networks are expected to be used by
sensing applications to collect data from fixed environment
monitoring stations along with the sensors mounted on mobile
sensing platforms. These mobile sensing platforms are in turn
expected to leverage micro-servers such as Raspberry Pis for
collecting the data, performing some initial computation, and
disseminating their results for further processing.

A mobile sensing platform is also envisioned to host a
wide range of applications, each requiring access to a subset
of available sensors. For instance, sensors deployed on buses
may be used for monitoring the air quality, the temperature,
and the sound levels [1]. Consequently, there is a need to
support multi-tenancy and support applications with different
life-cycles. We believe that Cloud OSes such as OpenStack1

can be used to meet these requirements.
We posit that Cloud OSes can be extended to manage the

sensing resources along with the computing resources at the
network edge. In this demonstration we show that OpenStack
can be used to manage containers on Rasperry Pis. This setup
enables a) micro-servers at the network edge to support multi-
tenancy like their counterparts in data centers, and b) Cloud
OSes to manage the resources at the network edge along with
the resources in data centers. Specifically, such a hybrid cloud
setup can be useful in augmenting the computational resources
in private and public clouds with their counterparts in the
network edge.

Along with the setup with OpenStack, we also have a
prototype setup of a mobile sensing platform in which air
quality sensors are connected to a Raspberry Pi. For instance,
we have a) the Grove optical dust sensor,2 b) the Sainsmart
MQ1313, and c) DF Robotics SEN01594 connected to a
Raspberry Pi using GPIO. An example of the setup is shown
in Figure 1(a). We plan to integrate these sensors with the
current setup of the Pi cluster, as discussed in section III.

II. SYSTEM DESCRIPTION

As shown in Figure 2(a), our setup consists of i) a high-
end server cluster which contains five Dell PowerEdge M610

1https://www.openstack.org/
2http://wiki.seeedstudio.com/Grove-Dust Sensor/
3https://www.sainsmart.com/products/mq-131-gas-sensor-ozone-module
4https://www.dfrobot.com/product-1023.html

(a) Our mobile sensing platform. (b) Rack of Raspberry Pis.

Fig. 1. Devices used by our system. Our mobile sensing platform consists
of air quality sensors connected to a Raspberry Pi. We also have a cluster of
Raspberry Pis which are managed using OpenStack.

servers with two quad core Intel Xeon E5540 processors, and
ii) a Raspberry Pi cluster with three Raspberry Pi 3B model.
We use Ubuntu 16.04 as the base OS in these clusters.

We use OpenStack Newton release to manage this cluster.
Specifically, we configure one of the high-end servers as an
OpenStack controller with the Neutron services running on
a Raspberry Pi unit. All the other nodes are configured as
OpenStack compute nodes.

The high-end servers used as compute nodes were con-
figured to use either KVM to spawn VMs, or LXC to
spawn containers. In contrast, the Raspberry Pis currently have
limited or no support for instantiating VMs spawned using
KVM and QEMU. We therefore use the Raspberry Pis to
spawn containers. Specifically, we configure OpenStack to use
the nova-compute-lxc agent for managing containers spawned
using LXC. An OpenStack compute node uses two interfaces,
one for communicating with the controller, and the other for
providing network connectivity for the VMs. The Raspberry
Pi 3B has an embedded 100 Mbit Ethernet interface, and a
Wi-Fi interface. However, OpenStack is unable to use the Wi-
Fi interface. One reason for this behavior is that OpenStack is
designed to manage servers in data centers who primarily use
wired technologies such as Ethernet. We therefore add a USB
Ethernet adapter on each Raspberry Pi.

In Figure 2(b), we present an example screenshot from the
OpenStack admin console. We can see that the controller was
able to include the Raspberry Pis in our cluster as compute
nodes. In Figure 2(c), we present the results obtained by
running Apache Spark in our containers to extract the average
ocean temperature at specific locations from the NOAA data.5

We run Apache Spark inside containers spawned on Raspberry

5https://www.esrl.noaa.gov/psd/cgibin/db search/DBListFiles.pl?did=132
&tid=67170&vid=2421



Container

Container

Container

Container

Container

Controller

(a) Network Topology. (b) Screenshot of OpenStack console.
(c) Ocean temperature extracted by running Spark
on our cluster.

Fig. 2. System overview. We create an OpenStack Cloud with our cluster of Raspberry Pis and some high-end servers. We then launch a job which requests
resources from our cloud for running Apache Spark.

TABLE I
RESPONSE TIMES FOR LAUNCHING AND DELETING VIRTUAL INSTANCES

Response Time (seconds)
KVM (Server) LXC (Server) LXC (Pi)

Action min max avg min max avg min max avg
nova.boot-server 29.53 61.66 39.39 16.77 23.41 19.02 19.71 21.76 20.45

nova.delete-server 5.06 5.69 5.28 12.29 17.19 14.94 7.94 10.75 9.89

Pi to exemplify that the containers running in the Raspberry
Pis can be used to perform numerical analysis of data.

In Table I we compare the time required to spawn a VM
using KVM on our high-end server, a container on our high-
end server using LXC, and a container on a Raspberry Pi using
LXC. We used an image of Ubuntu 16.04 for this evaluation,
and the values presented are the minimum, maximum, and
average values obtained across 10 iterations. The nova.boot-
server action spawns the VM/container, while the nova.delete-
server action deletes the VM/container. We observe that time
required to spawn and delete containers on a Raspberry Pi is
larger than the time required to perform those actions on a
high-end server. However, it is still less than the time required
to spawn and delete VMs instantiated using KVM on high-end
servers. These preliminary results are promising and motivate
us to continue building this platform.

Specifically, we plan to manage our sensing platform using
this setup. In the following, we present our research agenda
based on this setup.

III. RESEARCH AGENDA

Initially we plan to use and extend our current setup with
additional Raspberry Pi units, and then address the following
open questions.

A. Managing sensing resources in Cloud OSes

Currently the resources made available to containers are
limited to CPU, memory, disk space, and networking inter-
faces. We plan to extend the list of resources with the list
of sensors which are to be made available to the containers.
This requires a) the OpenStack modules running on the micro-
servers to be able to identify the set of sensors connected,
export this set to the OpenStack controller, and instantiate

containers with a subset of these sensors, and b) the OpenStack
controller to be able to compose containers with a subset
of these sensors. Furthermore, there may be instances where
multiple containers would like to have access to a given sensor.
In this context, we plan to extend OpenStack using the insights
of the Android architecture which exposes sensors on mobile
devices to applications.6 For instance, OpenStack can either
a) add a sensor into the container’s name space and make it
available solely to a container, or b) create virtual copies of
the sensors distribute these virtual copies to the containers,
or c) create a proxy for the sensor and the allows containers
to request data from these proxies. We plan to explore the
viability of each of these approaches.

B. Networking

The micro-servers are expected to use a range of commu-
nication technologies to communicate with each other and the
OpenStack controller. For instance, micro-servers running on
the same mobile station may either use Wi-Fi or Ethernet to
communicate with each other, and use cellular technologies to
communicate with the OpenStack controller. We have an LTE
testbed configured in our lab, and we plan to experiment with
running the cloud control plane over the cellular fabric.

C. Resource Management in Multi-clouds

In our environment we are already using heterogeneous
hardware and we have configured the OpenStack scheduler to
recognize the different CPU architectures accordingly when
spawning instances. Our next step is to include resources
from public clouds (Amazon EC2, Microsoft Azure, and
Google Cloud Platform) and create a multi-cloud solution.
In this respect we already have started experimenting with
the libcloud API7 as library for interacting with many of the
popular cloud service providers using a unified API.

REFERENCES

[1] N. Castell, F. R. Dauge, P. Schneider, M. Vogt, U. Lerner, B. Fishbain,
D. Broday, and A. Bartonova, “Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?” Environment
international, vol. 99, pp. 293–302, 2017.

6https://source.android.com/devices/sensors/sensor-stack
7https://libcloud.apache.org/


