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I. INTRODUCTION

Effective resource management is critical in multi-tenant,
virtualized cloud platforms to meet service level objectives
(SLOs) of individual applications. Thus, cloud providers must
be able to detect sources of performance bottlenecks and
reliability problems. One such cause, which is the focus of this
study, is Performance Interference, where applications collo-
cated on the same physical resource influence each others’
performance in a non-linear fashion. To control the adverse
consequences of such collocation-caused interference, differ-
ent resource usage statistics, models of application’s sensitivity
to other collocated applications, and knowledge of workload
patterns are required [1]. This challenge is further amplified
when the resources span the spectrum from centralized cloud
resources all the way to the edge.

Obtaining resource statistics without unduly consuming
cloud platform resources is a hard problem for a variety of
reasons including having to deal with different virtualization
techniques, heterogeneity and advances in hardware and oper-
ating systems, changing application mix with differing SLOs,
dynamic workloads, and the tight coupling of the installed
statistics collection strategies to hardware-specific, low-level
statistics collection APIs. These factors make it hard for
providers to reuse and extend existing resource usage metric
collection capabilities particularly when hardware changes,
and applications and their structure changes (e.g., a move from
traditional 3-tier to microservices-based architectures).

Although resource usage statistics collection tools such as
collectd (https://collectd.org/) and benchmarking frameworks,
such as PARSEC (http://parsec.cs.princeton.edu/), YCSB [2],
CloudSuite [3] and BigDataBench [4] exist, their objective is
not about inferring performance interference on multi-tenant
heterogeneous servers, which is a key determinant of perfor-
mance delivered to the hosted service. Although iBench [1]
attempts to quantify the data-center performance interference,
it provides only some of the building blocks thus making the
users responsible to design and integrate the capabilities and
deal with the complexities stemming from making sense out
of the collected low-level raw usage data.

The desired resource monitoring framework must be able to
collect micro architectural resource statistics such as context
switches, page faults, cache utilization, retired instructions per

second (IPS), memory bandwidth, scheduler wait time and
scheduler I/O wait time, and utilization of last level cache
(LLC). At the same time, not all the micro architectural
details may be necessary for every use case, and hence the
framework’s micro benchmarking capabilities must be able
to pinpoint the dominant micro architectural statistics thereby
allowing the user to configure the framework to collect only
the important statistics.

To address these requirements, this poster presents ongoing
work on an extensible performance interference benchmark-
ing and modeling framework that we are developing called
FECBench (Fog/Edge/Cloud Bench).

II. FECBENCH DESIGN AND PRELIMINARY RESULTS

Figure 1 shows the FECBench architecture. FECBench’s
usage statistics collection framework exploits the plugin
architecture of the underlying collectd monitoring tool. We
have developed several plugins to collect micro-architectural
metrics. Our design allows additional plugins to be added.
FECBench can collect virtual machine (VM) and Docker
container-specific metrics. For data collection at a central-
ized location, an InfluxDB time-series database is utilized.
Beyond its resource monitoring capabilities, FECBench also

Fig. 1. FECBench Architecture

provides a benchmarking component. This consists of a
number of latency-sensitive, client-server target applications,
such as image processing, machine learning applications, web-
search application, etc, which we have integrated from existing
frameworks. In addition, there are workload applications that
are used to cause performance interference on the target



applications. To make it intuitive to use FECBench, it sup-
ports the configuration of metrics collection and infrastructure
provisioning using visual domain specific modeling language
(DSML). We have used DSMLs for deployment and configu-
ration of software systems [5, 6, 7]. FECBench’s performance
modeling component, provides application performance mod-
eling capabilities using different machine learning models. We
have used FECBench for resource management across the
cloud, fog, edge resource spectrum [8, 9].

Next, we describe two key building blocks of FECBench.

Performance Modeling using Surrogate Modeling: To build
application performance models, we must first understand the
cumulative effect of all the resources on the application’s
performance. This needs a strategy to stress different system
resources such as CPU, memory bandwidth, L2 bandwidth,
L3 bandwidth, context switches, network and disk I/O, and
measure the application performance. Tools such as stress-
ng, iperf, and bonnie are used to create resource stress for a
single resource at different stress levels. However, they lack
the ability to generate stress across different resources at user-
specified levels. To address this difficulty, FECBench supports
an extensible knowledge base of colocated applications that
produces different stress levels on the system’s resource. To
our knowledge, presently there is no known benchmarking
suite that can stress all the system resources from zero to 100
percent along different resource limits in parallel.
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Fig. 2. Observed L3 Bandwidth utilization using different colocated applica-
tion mix

We can obtain an application collocation combination that
will produce the desired stress on the resources. Our hy-
pothesis is that if we colocate applications, then the final
resource utilization of the system will follow some weightage
summation of the individual application resource utilization.
To test this hypothesis, a three application colocation pattern
is executed on an Intel Xeon E5-2620v3 processor. Figure 2

shows our initial findings indicating a near linear relationship
between the summation of individual application resource
utilization and the collocated applications’ aggregated resource
utilization.
Analysis and Visualization: We are building an automated
pipeline for data analysis and visualization that will help
performance engineers get deeper insights into application’s
performance characteristics. In our preliminary study, we
focused on an image processing application as our target appli-
cation. Due to server multi-tenancy, the executing background
applications cause performance degradation of the target image
processing application. The CDF response time of the job
completion is shown in Figure 3. Our automated analysis
pipeline is able to identify the dominant sources of interference
in terms of micro architectural metrics as shown in the second
part of Figure 3.
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Fig. 3. CDF graphs showing Image processing latency variation and the
identified dominant features that cause performance interference

Ongoing and Future Work: We are exploring an approach
to find different sampling points that cover our design space
across different resource dimensions using the Design of Ex-
periments (DOE) method. For each such sampling point, using
a heuristic algorithm, we can find that application combination
which will stress the resources near the sampling values’ limit.
Using these sampling points, approximate surrogate models of
application performance can then be built.
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