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Abstract— Edge Computing has been proposed as an 

architecture for offering services to mobile devices or sensors. 

Modern multimedia applications such as face recognition, object 

and pose identification, and mobile augmented reality require 

cloud computing resources close to the mobile and sensors 

devices. Docker and containers have been proposed as a platform 

for edge computing and as a tool for efficient service handoff 

across edge computing servers. This paper presents a container-

based cloudlet environment to improve resource usage for the 

architecture using optimization algorithms.   
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I. INTRODUCTION 

Edge computing offers services to mobile devices or 
sensors, for which cloud services’ response times do not bring 
the desired quality of service. This architecture offers nodes at 
the edge to run code instead of running it on the resource-
restrained devices. The impact of cloud data centers to 
multimedia applications has been measured before [1]. 
Multimedia applications that have gained attention such as face 
recognition, object and pose identification, and mobile 
augmented reality, are benefited when cloud computing 
resources are close to the mobile and sensors devices. This 
requirement gave space for the emergence of technologies to 
solve this, where the main difference is in the purpose for 
which such technologies are built. One of the most popular is 
edge computing, which is driven by the necessity of building 
edge data centers closer to the mobile and sensors devices 
based on virtual machines, back in 2009 [2]. Authors have 
differentiated edge computing [3] from fog computing [4]. Fog 
computing on the other side has been proposed mainly for 
decentralizing IoT infrastructure by creating multiple layers of 
nodes between the edge devices (usually sensors) and the 
cloud. Cloudlet architectures can be compared in several 
metrics, which include cost, scalability, mobility support, 
freedom of service node to move to other cloudlets, and 
computation duration. Docker and containers have been 
proposed as a platform for Edge Computing [5] and as a tool 
for efficient service handoff across edge computing servers [6]. 
Experiments of using containers showed that their proposal 
reduced the total duration of service handoff time by 80%. Our 
work uses containers as a platform for cloudlets with the ability 
to select the best place to execute the tasks using a task 
allocation algorithm.  We present a container-based cloudlet 

environment to improve resource usage using an optimization 
algorithm in face recognition tasks based on OpenFace. 

II. THE CONTAINER-BASED CLOUDLET DESIGN 

This cloudlet architecture allows image classification 
services to be executed either on the cloudlet or in the cloud 
depending on the resources available. The cloudlet uses a task 
allocation algorithm to select the best distribution of resource 
assignment according to the tasks and resources available at the 
time of the execution. The purpose is to enable lightweight 
cloudlets based on Docker which target resource-constrained 
devices as their deployment platform. Given this constraint, the 
necessity of a task allocation algorithm becomes clearer.  
Figure 1 shows a container-based architecture where cloudlet 
devices and cloud devices can resolve tasks according to the 
type of each one. For example, classification and training tasks 
are resolved directly in the cloud-based OpenFace. However, 
the container-based cloudlet layer will resolve the face 
recognition tasks. It is clear that tasks should be allocated and 
resolved by each layer depending on the weight or complexity 
of it. This kind of approach is a static and non-optimized task 
allocation architecture. We propose this same architecture but 
not only executing face recognition tasks in the cloudlet layer 
but also executing classification and training tasks.  

III. ARCHITECTURE IMPLEMENTATION 

We implemented the architecture to test an optimization 
algorithm we proposed in a previous paper [7]. The figure 
shows three main layers of the architecture. The first layer is 
composed of the end user devices such as smart-phones and 
laptops. These devices are the ones who demand the service 
provided by the superior layers. 

The next component is the optimization algorithm which 
runs as a part of the cloudlet layer. Every task that is demanded 
by the users is analyzed by this algorithm to make the 
allocation decisions according to the optimization. When the 
optimization process completes, it executes and distributes the 
tasks according to the results of the algorithm. The Gurobi 
library [8] runs as the core of the LIP algorithm. The Cloudlet 
layer is composed of 4 Fog nodes; we implemented them as 
container devices running in Docker. Each of them is running a 
public Docker image called "bamos/openface" with an add-on 
of the Flask Library which allows each fog node to publish a 
web service [9]. Each fog node runs a Python script which 



 
Fig. 1. Container-based cloudlet architecture for face  recognition 

 
launches a web service to execute the OpenFace task according 
to the user requirement. 

The third layer is representing a cloud computing scheme. 
In this layer, two cloud nodes are running as Docker OpenFace 
containers. This layer was implemented inside an Ubuntu 
virtual machine loaded in Microsoft Azure platform. Each of 
the cloud nodes is almost the same as the ones running in the 
cloudlet layer. However, the main difference between every 
node in the architecture is the container capacity. In the case of 
the cloudlet containers, the CPU was limited to 2 processors 
and the RAM to 500 MBytes. In the cloud containers, the 
limitation was set to 2 processors and 4 GBytes of RAM. Disk 
and bandwidth were also different for each type of node. The 
algorithm needs the cost of every task measured as resources 
used to make the correct task assignment for each node. 
Working with the OpenFace library, we could be able to 
extract and measure three main jobs. Table I summarizes and 
describes the resource consumption of each type of task.  

The tasks that this implementation will be using are the 
following. Training: these tasks expect as input images to build 
and train the system to build a “classifier.” The classifier file 
has all the information related to the face recognition that 
allows the algorithm to recognize, identify, and classify other 
faces that were not used to train the system. Specifically for 
this project, this task is executing a training set of 30 images of 
two people. Classification: is the process of identifying and 
establishing a level of confidence in an image concerning a 
face recognition process. For this experiment, this task is 
classifying two images to get the level of confidence according 
to the classifier generated by the training process. Compare: it 
allows the user to compare 2 or more images. There is no need 
to train or recognize a person but to compare how close one 
face to another face is. This example task is comparing four 

different images of two different people. The main idea is to 
measure how close is one face of another and giving a 
confidence rate to measure the comparison.  

TABLE I.  TYPES OF TASKS IN OPENFACE 

Task Type 
RAM 

(MB) 

CPU 

Used 

Cores 

Used 

Disk Used 

(MB) 

Time 

(sec.) 

Classify 178.2 65.3% 1.31 1  6.15 

Train 
358.2 

 
91.9% 

1.84 5.3 14.93 

Compare 199.3 76.8% 1.54 1.5 6.308 

TABLE II.  TASK ASSIGNMENT RESULTS 

Task Task Type 
Assigned 

Node 

1 Train Fog 1 

2 Classify Fog 2 

3 Classify Fog 3 

4 Compare Fog 4 

5 Classify Cloud 1 

6 Classify Cloud 2 

  

IV. EXPERIMENTS AND RESULTS 

For the implementation, we built two examples to 
demonstrate how the optimization algorithm and the 
architecture are working. We used four Fog nodes and two 
cloud nodes. Each node is emulated by a Docker image 
running Ubuntu with the OpenFace library. We prepared a list 
of tasks requirements per experiment. The clients send the 
tasks requirements, and a centralized node receives them. This 
centralized node executes the optimization algorithm. Then, 
this centralized application is going to distribute and allocate 
each task to its correspondent node according to the algorithm 
results. This training process consists in running the LIP 
optimization processes 1000 times while the value of is being 
modified each cycle randomly. The outputs of this operation 
are the nodes where each task is going to be assigned and the 
total cost of the optimized response. As a result of the 
experiment, the architecture and the optimization algorithm 
allocated the tasks in the order shown in Table II where the 
first four tasks were allocated in the cloudlet layer, and the 
rests were allocated in the cloud layer.  

V. FUTURE WORK 

As a continuation of this work, we plan to create a new 
version of the optimization algorithm proposed in [7] where the 
parameters will adapt to the OpenFace library requirements. 
We also plan to run a new set of experiments with more tasks 
as input to have more detailed results. The input for the 
architecture will also be modified to receive a stream of tasks 
and not only a list of predefined tasks as these experiments 
used. We consider that this work highlights the potential of 
using container-based cloudlet nodes with optimization 
algorithms to better allocate OpenFace tasks.  
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