
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Poster: Container-Based Architecture for Optimal

Face-Recognition Tasks in Edge Computing
Nadim Tellez

Systems Engineering Department
Universidad del Norte

Barranquilla, Colombia

barreran@uninorte.edu.co

Miguel Jimeno

Systems Engineering Department
Universidad del Norte

Barranquilla, Colombia

majimeno@uninorte.edu.co

Augusto Salazar

Systems Engineering Department
Universidad del Norte

Barranquilla, Colombia

augustosalazar@uninorte.edu.co

Elias Nino-Ruiz

Systems Engineering Department
Universidad del Norte

Barranquilla, Colombia

enino@uninorte.edu.co

Abstract— Edge Computing has been proposed as an

architecture for offering services to mobile devices or sensors.

Modern multimedia applications such as face recognition, object

and pose identification, and mobile augmented reality require

cloud computing resources close to the mobile and sensors

devices. Docker and containers have been proposed as a platform

for edge computing and as a tool for efficient service handoff

across edge computing servers. This paper presents a container-

based cloudlet environment to improve resource usage for the

architecture using optimization algorithms.

Keywords: component, formatting, style, styling, insert

I. INTRODUCTION

Edge computing offers services to mobile devices or
sensors, for which cloud services’ response times do not bring
the desired quality of service. This architecture offers nodes at
the edge to run code instead of running it on the resource-
restrained devices. The impact of cloud data centers to
multimedia applications has been measured before [1].
Multimedia applications that have gained attention such as face
recognition, object and pose identification, and mobile
augmented reality, are benefited when cloud computing
resources are close to the mobile and sensors devices. This
requirement gave space for the emergence of technologies to
solve this, where the main difference is in the purpose for
which such technologies are built. One of the most popular is
edge computing, which is driven by the necessity of building
edge data centers closer to the mobile and sensors devices
based on virtual machines, back in 2009 [2]. Authors have
differentiated edge computing [3] from fog computing [4]. Fog
computing on the other side has been proposed mainly for
decentralizing IoT infrastructure by creating multiple layers of
nodes between the edge devices (usually sensors) and the
cloud. Cloudlet architectures can be compared in several
metrics, which include cost, scalability, mobility support,
freedom of service node to move to other cloudlets, and
computation duration. Docker and containers have been
proposed as a platform for Edge Computing [5] and as a tool
for efficient service handoff across edge computing servers [6].
Experiments of using containers showed that their proposal
reduced the total duration of service handoff time by 80%. Our
work uses containers as a platform for cloudlets with the ability
to select the best place to execute the tasks using a task
allocation algorithm. We present a container-based cloudlet

environment to improve resource usage using an optimization
algorithm in face recognition tasks based on OpenFace.

II. THE CONTAINER-BASED CLOUDLET DESIGN

This cloudlet architecture allows image classification
services to be executed either on the cloudlet or in the cloud
depending on the resources available. The cloudlet uses a task
allocation algorithm to select the best distribution of resource
assignment according to the tasks and resources available at the
time of the execution. The purpose is to enable lightweight
cloudlets based on Docker which target resource-constrained
devices as their deployment platform. Given this constraint, the
necessity of a task allocation algorithm becomes clearer.
Figure 1 shows a container-based architecture where cloudlet
devices and cloud devices can resolve tasks according to the
type of each one. For example, classification and training tasks
are resolved directly in the cloud-based OpenFace. However,
the container-based cloudlet layer will resolve the face
recognition tasks. It is clear that tasks should be allocated and
resolved by each layer depending on the weight or complexity
of it. This kind of approach is a static and non-optimized task
allocation architecture. We propose this same architecture but
not only executing face recognition tasks in the cloudlet layer
but also executing classification and training tasks.

III. ARCHITECTURE IMPLEMENTATION

We implemented the architecture to test an optimization
algorithm we proposed in a previous paper [7]. The figure
shows three main layers of the architecture. The first layer is
composed of the end user devices such as smart-phones and
laptops. These devices are the ones who demand the service
provided by the superior layers.

The next component is the optimization algorithm which
runs as a part of the cloudlet layer. Every task that is demanded
by the users is analyzed by this algorithm to make the
allocation decisions according to the optimization. When the
optimization process completes, it executes and distributes the
tasks according to the results of the algorithm. The Gurobi
library [8] runs as the core of the LIP algorithm. The Cloudlet
layer is composed of 4 Fog nodes; we implemented them as
container devices running in Docker. Each of them is running a
public Docker image called "bamos/openface" with an add-on
of the Flask Library which allows each fog node to publish a
web service [9]. Each fog node runs a Python script which

Fig. 1. Container-based cloudlet architecture for face recognition

launches a web service to execute the OpenFace task according
to the user requirement.

The third layer is representing a cloud computing scheme.
In this layer, two cloud nodes are running as Docker OpenFace
containers. This layer was implemented inside an Ubuntu
virtual machine loaded in Microsoft Azure platform. Each of
the cloud nodes is almost the same as the ones running in the
cloudlet layer. However, the main difference between every
node in the architecture is the container capacity. In the case of
the cloudlet containers, the CPU was limited to 2 processors
and the RAM to 500 MBytes. In the cloud containers, the
limitation was set to 2 processors and 4 GBytes of RAM. Disk
and bandwidth were also different for each type of node. The
algorithm needs the cost of every task measured as resources
used to make the correct task assignment for each node.
Working with the OpenFace library, we could be able to
extract and measure three main jobs. Table I summarizes and
describes the resource consumption of each type of task.

The tasks that this implementation will be using are the
following. Training: these tasks expect as input images to build
and train the system to build a “classifier.” The classifier file
has all the information related to the face recognition that
allows the algorithm to recognize, identify, and classify other
faces that were not used to train the system. Specifically for
this project, this task is executing a training set of 30 images of
two people. Classification: is the process of identifying and
establishing a level of confidence in an image concerning a
face recognition process. For this experiment, this task is
classifying two images to get the level of confidence according
to the classifier generated by the training process. Compare: it
allows the user to compare 2 or more images. There is no need
to train or recognize a person but to compare how close one
face to another face is. This example task is comparing four

different images of two different people. The main idea is to
measure how close is one face of another and giving a
confidence rate to measure the comparison.

TABLE I. TYPES OF TASKS IN OPENFACE

Task Type
RAM

(MB)

CPU

Used

Cores

Used

Disk Used

(MB)

Time

(sec.)

Classify 178.2 65.3% 1.31 1 6.15

Train
358.2

91.9%

1.84 5.3 14.93

Compare 199.3 76.8% 1.54 1.5 6.308

TABLE II. TASK ASSIGNMENT RESULTS

Task Task Type
Assigned

Node

1 Train Fog 1

2 Classify Fog 2

3 Classify Fog 3

4 Compare Fog 4

5 Classify Cloud 1

6 Classify Cloud 2

IV. EXPERIMENTS AND RESULTS

For the implementation, we built two examples to
demonstrate how the optimization algorithm and the
architecture are working. We used four Fog nodes and two
cloud nodes. Each node is emulated by a Docker image
running Ubuntu with the OpenFace library. We prepared a list
of tasks requirements per experiment. The clients send the
tasks requirements, and a centralized node receives them. This
centralized node executes the optimization algorithm. Then,
this centralized application is going to distribute and allocate
each task to its correspondent node according to the algorithm
results. This training process consists in running the LIP
optimization processes 1000 times while the value of is being
modified each cycle randomly. The outputs of this operation
are the nodes where each task is going to be assigned and the
total cost of the optimized response. As a result of the
experiment, the architecture and the optimization algorithm
allocated the tasks in the order shown in Table II where the
first four tasks were allocated in the cloudlet layer, and the
rests were allocated in the cloud layer.

V. FUTURE WORK

As a continuation of this work, we plan to create a new
version of the optimization algorithm proposed in [7] where the
parameters will adapt to the OpenFace library requirements.
We also plan to run a new set of experiments with more tasks
as input to have more detailed results. The input for the
architecture will also be modified to receive a stream of tasks
and not only a list of predefined tasks as these experiments
used. We consider that this work highlights the potential of
using container-based cloudlet nodes with optimization
algorithms to better allocate OpenFace tasks.

REFERENCES

[1] K. Ha et al., “The Impact of Mobile Multimedia Applications on Data

Center Consolidation,” in 2013 IEEE International Conference on
Cloud Engineering (IC2E), 2013, pp. 166–176.

[2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for

VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[3] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,

vol. 50, no. 1, pp. 30–39, Jan. 2017.
[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its

Role in the Internet of Things,” in Proceedings of the First Edition of

the MCC Workshop on Mobile Cloud Computing, New York, NY, USA,
2012, pp. 13–16.

[5] B. I. Ismail et al., “Evaluation of Docker as Edge computing platform,”

in 2015 IEEE Conference on Open Systems (ICOS), 2015, pp. 130–135.

[6] L. Ma, S. Yi, and Q. Li, “Efficient Service Handoff Across Edge

Servers via Docker Container Migration,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, New York, NY, USA,

2017, p. 11:1–11:13.

[7] N. Tellez, M. Jimeno, A. Salazar, and E. Nino-Ruiz, “A Tabu Search
Method for Load Balancing in Fog Computing,” Int. J. Artif. Intell., vol.

16, no. 2, Oct. 2018.

[8] “Gurobi Optimization - The State-of-the-Art Mathematical
Programming Solver.” [Online]. Available: http://www.gurobi.com/.

[Accessed: 26-Jul-2018].

[9] “Welcome | Flask (A Python Microframework).” [Online]. Available:
http://flask.pocoo.org/. [Accessed: 26-Jul-2018].

