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I. Introduction
Previous works on cloudlets [1, 2], one of the earliest

incarnation of edge computing, enable small data-centers
at the edge of the Internet. Many futuristic applications
become viable with these clusters that are only one wireless
hop away. One of the most promising genres of these
emerging applications is human-in-the-loop applications such
as wearable cognitive assistance [3].
In these applications, sensor data, for example video and

audio, are continuously streamed to a cloudlet, where they
are analyzed in realtime in order to assist users to complete
a particular task. Researchers have built prototypes of these
applications to help users assemble LEGO models and IKEA
furniture, and even learn how to play ping-pong [1, 4].
Cognitive assistance applications are highly interactive.

Feedback is sent back to the user once the application detects
interesting events, for example, when the user places the
wrong LEGO block on the model. The feedback loop is then
repeated until the user finishes the task. It is important to note
that not all sensory input triggers feedback. Take for instance,
an application which relies on image recognition. Inevitably,
some frames are going to receive confidence values below
a set threshold from the image recognition algorithms, and
thus do not generate feedback. We will refer to these inputs
as feedback-poor, and conversely, refer to inputs which do
generate feedback as feedback-rich.

These principles result in the following characteristics of
human-in-the-loop applications powered by edge computing:

Latency Sensitive: Given their tight interaction with the
physical world, the quality of human-in-the-loop applica-
tions is determined by the latencies experienced by users.
These applications are different from conventional mobile
applications by the low latency requirements inherent to the
applications themselves [5, 6]. For example, consider a Ping-
Pong Assistance application that instructs a user where to
hit a ball – any instruction delivered after the user has made

a hit is useless. Hence, the average and the distribution of
end-to-end latency, in particular for feedback-rich inputs, can
serve as good metrics for a benchmark tool.

Compute Intensive: Cognitive Assistance applications
aim to enhance the cognitive capabilities of users, and are
thus compute intensive as well due to widespread use of the
state-of-art computer vision and machine learning algorithms,
particularly Deep Neural Networks (DNNs). Although mobile
devices are becoming increasingly powerful, the gap between
mobile and static elements continues to exist [7]. While state-
of-the-art DNN object detectors can run at more than 20
FPS on a server GPU, their performances are much worse on
mobile GPUs - some models cannot even be loaded due to
memory constraints. Cloudlet-based applications overcome
these challenges by offloading the computation.

Benchmarking infrastructures for these human-in-the-loop
applications is challenging – the main issue arises from
the involvement of humans. Applications’ execution path
and resource utilization vary among users. For example,
in a task guidance application, the reaction speed of the
human to a new instruction governs the inter-arrival time
of the next feedback-rich input. Furthermore, large scale
evaluation of these applications require the involvement
of many human users. Both these aspects significantly
limit experimental studies that could be done to improve
architectures, algorithms, and protocols due to costs, efforts
as well as reproducibility.

II. The Measurement Framework
To establish a reproducible and comparable workload, the

first step in our methodology is to record a trace of the
sensory input data while having a human user operate the
target application. The collected data consists of the sensory
inputs provided to the system at runtime, for instance, in the
case of a visual application, the video feed from the camera.
To use the trace for reproducible experiments, we devel-

oped a benchmarking suite which can replay the trace to the
original application, which results in the same computation
to be performed on the edge as if a human was involved,
while also ensuring a reproducible application execution path.
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Figure 1: State diagram of the user model

During the replay, many system level metrics can be collected,
such as round-trip and processing times. By enabling the
client-side to play out the trace from a file, it becomes
independent from human operation.

In order to imitate a human behavior as close as possible,
we propose the following user model as shown in Figure 1.
We assume a user that is patient and does not make mistakes;
any error message received from the application backend is
ignored. We first divide a trace into steps that corresponds to
individual events that should trigger feedback. If a positive
feedback is received from the application, we jump ahead in
the trace to replay the next step as if a human user reacts to
the feedback. On the other hand, whenever the end of the
current step is reached without having received any positive
feedback, the step is rewound a number τ of seconds. To
avoid infinite loops, where the application is stuck on a step
forever, we have a maximum number of possible rewinds,
after which the application shuts down.

A. Architecture
The suite has three elements, as shown in Figure 2:
The application backend consists of instances of the

target application running on Docker [8] containers. These
correspond to real, unaltered instances of said cognitive
assistance applications – we do not model or emulate them
in any way – and they are containerized in order to be able
to execute an arbitrary number of them on the same cloudlet.

The client emulator consists of an Android application
which emulates the behavior of a user operating the target
cognitive assistance application while following the previ-
ously discussed user model. This Android app replays the
previously recorded sensory data over the network to a
specific application backend, while collecting statistics and
measurements of the system status.

The control backend also runs on the cloudlet, although
it could be executed in a separate cloud or cloudlet. It
controls the execution of the experiments, by controlling the
client emulators over the network, initializing the application
backends and finally aggregating collected data when the
experiments are completed.
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Figure 2: General architecture of the benchmarking suite.

III. Demo Overview
We will demonstrate the benchmarking framework using

the LEGO Task Guidance application previously developed
by Chen et al. [4]. This application guides a user step by step
in the assembly of a LEGO model; input consists exclusively
of video feed of the current state of the assembly, whereas
feedback includes visual and auditory components in the
form of animations and speech, respectively.

The benchmarking tool will be employed to extract key real-
time metrics from this application, e.g. average computation
and network times, as well as the estimated user experience
level of the system as a whole (flawless, impaired or unusable,
based on the categorization in [6]).

IV. Discussion and Future Work
Some open questions and challenges remain to be tackled

in the design and development of the presented tool. To start
with, the benchmarking suite is relatively narrow in the types
of applications it can be applied to, currently only targeting
event based cognitive assistance applications. The tool needs
to be extended to work on a much a broader spectrum of
applications, in particular those that do not have a clear task
model. Furthermore, the current implementation does not
support hardware accelerators (e.g. GPUs) that are commonly
used for DNN inference.
In addition, our current user model is simplistic. This

model could be expanded to emulate a human user more
accurately and realistically, e.g. making mistakes and respond-
ing to feedback to correct them.
We plan to extend our work in two directions. First, in

addition to emulating user behaviors, we plan to simulate
all the components in the system in order to generate
reproducible experiments, test individual components of a
real system, and identify performance bottlenecks when many
users are using an application concurrently. Second, we
are going to develop a statistical characterization of the
application footprint, based on the data obtained from the
tool.
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