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Motivation: Efficient Deep Neural Network Design
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Inception-v3 Current DNN Challenges

• Heavy Computation Cost;

• High Energy Consumption;

• Long Latency, etc.

Current DNN Optimizations

• Neural Architecture Design;

• Filter Pruning;

• Weight Quantization, etc.

MobileNet

ShuffleNet

MnasNet

Filter Pruning

Weight Quantization
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Outline: Efficient Deep Neural Network Design
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Motivation: Multi-Path NAS vs. Single-Path NAS

Stamoulis, Dimitrios, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu. "Single-path nas: Designing hardware-efficient 
convnets in less than 4 hours." In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 481-497. Springer, Cham, 2019.
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Single-Path Neural Architecture Search Overview

• Macro-Architecture: Mobile Conv-Nets;

• Micro-Architecture: MB-Conv Block;

• Universal Super Kernel;

• Kernel Size Search;

• Expansion Ratio Search, etc..
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Accuracy and Efficiency Comparison
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Motivation: Continuous vs. Discrete Search Space

Initial
Layers

LayerWidth
Config-1

LayerWidth
Config-2

• Optimal layer width configuration is need in many Efficient DNN Design applications, like NAS,
Filter pruning, etc.

• However, the continuous layer width design space and the exponential design space exploration
by multiple layers make it hard to find the optimal model-wise configuration.

Continuous
Search Space

Discrete
Search Space
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Hardware-aware DNN Search Space Optimization (GPU)

• When taking hardware-aware deployment into consideration, we could find optimal discrete
layer width configurations which achieve the optimal utilization/arithmetic throughput;

• Thus, we could significantly reduce the search space from continuous to discrete ones, e.g., 512
candidates per layer -> 5 candidates per layer, 100x Less;
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Hardware-aware DNN Search Space Optimization (GPU)

• Based on the hardware discrete search space optimization, we could improve the search efficiency
of NAS methods, as well as adapt/optimize the existed DNN architectures on the given hardware.
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Experimental Evaluation

• Compared to SOTA Efficient Net:

• 1.5X less latency;

• +3.97% ImageNet accuracy;

• Consistent Latency Reduction;

• Generality Across GPUs:

• Volta Titan-V

• Pascal P6000

• Maxwell Jetson Nano
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But very few works tackle the feature map redundancy pruning.

Many works are on filter redundancy pruning.

Conventional Filter Weights PruningConvolution im2col implementation[1].

Motivation: DNN redundancy exists in both filters & feature maps.

[1] DeLTA: GPU Performance Model for Deep Learning Applications with In-depth Memory System Traffic Analysis

Feature Maps
Filters

Feature Maps
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Motivation: Dynamic Input-based DNN redundancy exists in feature maps.

Class: Dog

Class: Cat

Class: Bird

Class: Chain

Overall Overall

• Feature map importance is very Sparse;

• Bright components: Useful features;

• Dark components: Non-useful features;

• For DNN-based classifiers, such feature 

map redundancy can exist a lot.

Olah, et al., "The Building Blocks of Interpretability", Distill, 2018. 

Therefore, we propose to conduct feature map redundancy elimination, i.e., dynamic 

feature map pruning.
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Antidote: channel-wise& spatial-wise feature map pruning

• Between any two conv layers, we use attention-based mechanism to prune non-important

channels and spatial columns in feature maps;

• The output sparse feature map will consist of less channels and spatial columns to save next

layer’s computation.
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Attention-based feature importance ranking

Spatial Attention:

Channel Attention:

Attention-based Pruning mask:
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Case Study: Effectiveness of attention-based ranking

• Attention-based ranking is very effective in 

evaluating feature importance:  

• With same pruning rate, 70% higher 

accuracy than random feature selection;

• 60% feature map redundancy can be 

eliminated without accuracy drop in VGG16;

• However, if we reach high feature pruning rate, the accuracy drop can still be non-negligible;

• Therefore, we propose training-phase optimization as a remedy: Training with targeted dropout. 
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Training-phase Optimization: Targeted Dropout

iters-0 iters-i iters-n

• During training, dropping out least-

important features;

• Advantages:

• Resistance to accuracy drop;

• No repetitive retraining.

Attention-based Targeted Dropout Training
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Experimental Evaluation

Across different datasets and models, our method could generally achieve 37%~54% FLOPs reduction 

with <1% accuracy drop, significantly outperforming previous state-of-the-art works.
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• Dynamic vs. Static: targeting at each image, more precise and aggressive.

• For VGG16 on cifar10, traditional static pruning methods can remove about [17%, 10%, 10%, 

45%, 65%] channels per block (General Redundancy on whole datasets).

• Our dynamic method can remove [20%, 20%, 60%, 90%, 90%] channels (Per-input Redundancy).

• Spatial-wise + Channel-wise: Flexible & comprehensive redundancy elimination;

• Filter pruning can remove channel redundancy only;

• But for ImageNet-size input (224x224), spatial

redundancy is the main redundancy!

• We can prune 50~60% spatial feature columns

for every layer for VGG on ImageNet.

Advantages of Antidote: Dynamic Feature Pruning
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Hardware-oriented Deployment Optimization

On ReRAM-based crossbar architecture, such spatial &
column feature map pruning enables fine-grid sparsity,
which we could leverage to get for actual speedup.
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