

Exploring the Design Space of Efficient Deep Neural Networks

-- The Fifth ACM/IEEE Symposium on Edge Computing

Fuxun Yu¹, Dimitrios Stamoulis², Di Wang², Dimitrios Lymberopoulos², Xiang Chen¹ George Mason University¹, Microsoft²

Introduction

Motivation: Efficient Deep Neural Network Design

Efficiency on Static DNN Architecture Search

- Hardware-aware Design Space Optimization
- Single-Path Neural Architecture Search

Efficiency on Dynamic DNN Execution

- Dynamic Feature Map Pruning
- Hardware-oriented Deployment Optimization

Motivation: Efficient Deep Neural Network Design

Current DNN Challenges

- Heavy Computation Cost;
- High Energy Consumption;
- Long Latency, etc.

Current DNN Optimizations

- Neural Architecture Design;
- Filter Pruning;
- Weight Quantization, etc.

Outline: Efficient Deep Neural Network Design

Introduction

Motivation: Efficient Deep Neural Network Design

Efficiency on Static DNN Architecture Search

- Single-Path Neural Architecture Search
- Hardware-aware Design Space Optimization

Efficiency on Dynamic DNN Execution

- Dynamic Feature Map Pruning
- Hardware-oriented Deployment Optimization

Motivation: Multi-Path NAS vs. Single-Path NAS

- NAS problem: expensive path-level selection
- · Supernet: each op as separate path/layer
- #parameters/layer: all weights across all paths

(2) Proposed NAS method: *Single-path* search space

- NAS problem: efficient kernel-level selection
- Supernet: all ops in single "superkernel"/layer
- #parameters/layer: #weights of largest op only

Stamoulis, Dimitrios, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu. "Single-path nas: Designing hardware-efficient convnets in less than 4 hours." In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pp. 481-497. Springer, Cham, 2019.

Single-Path Neural Architecture Search Overview

- Macro-Architecture: Mobile Conv-Nets;
- Micro-Architecture: MB-Conv Block;
- Universal Super Kernel;

•

- Kernel Size Search;
- Expansion Ratio Search, etc..

Accuracy and Efficiency Comparison

	Top-1	Top-5	Mobile	Search
Method	$Acc^{(\%)}$	Acc (%)	Runtime (ms)	Cost (epochs)
MobileNetV1 [11]	70.60	89.50	113	
MobileNetV2 $1.0x$ [17]	72.00	91.00	75.00	-
MobileNetV2 1.0x (our impl.)	73.59	91.41	73.57	
Random search	73.78 ± 0.85	$5\ 91.42 \pm 0.56$	$77.31\pm0.9~\mathrm{ms}$	-
MnasNet 1.0x [20]	74.00	91.80	76.00	40.000
MnasNet 1.0x (our impl.)	74.61	91.95	74.65	40,000
ChamNet-B [6]	73.80	_	_	240‡
ProxylessNAS-R [4]	74.60	92.20	78.00	200*
ProxylessNAS-R (our impl.)	74.65	92.18	77.48	200
FBNet-B [21]	74.1	-	-	00
FBNet-B (our impl.)	73.70	91.51	78.33	90
Single-Path NAS (proposed)	74.96	92.21	79.48	8 (3.75 hours)

Fig. 5. Hardware-efficient ConvNet found by *Single-Path* NAS, with top-1 accuracy of 74.96% on ImageNet and inference time of 79.48ms on Pixel 1 phone.

Introduction

Motivation: Efficient Deep Neural Network Design

Efficiency on Static DNN Architecture Search

- Single-Path Neural Architecture Search
- Hardware-aware Design Space Optimization

Efficiency on Dynamic DNN Execution

- Dynamic Feature Map Pruning
- Hardware-oriented Deployment Optimization

Motivation: Continuous vs. Discrete Search Space Layer Width Initial Layer Width $\hat{\mathbf{y}}(t)$ **Config-1 Config-2** Layers Continuous **Search Space** y(k)Discrete **Search Space** k

- Optimal layer width configuration is need in many Efficient DNN Design applications, like NAS, Filter pruning, etc.
- However, the <u>continuous layer width design space</u> and <u>the exponential design space exploration</u> by multiple layers make it hard to find the optimal model-wise configuration.

Hardware-aware DNN Search Space Optimization (GPU)

Figure 2. An illustration on parallel workload mapping to GPUs. (a) The GPU architecture hierarchy is composed of SMs and CUDA cores. (b) The parallel workload is also logically split into blocks and threads so as to map to the GPU hierarchy.

Figure 6. Underlying the latency staircase, the GPU's runtime efficiency changes dramatically, which can be reflected by the SM Utilization (U) and Throughput (T). By being aware of such GPU runtime efficiency guidelines, we can identify the optimal configuration candidates for optimization.

- When taking <u>hardware-aware deployment</u> into consideration, we could find <u>optimal discrete</u> <u>layer width</u> configurations which achieve the optimal utilization/arithmetic throughput;
- Thus, we could significantly reduce the search space from <u>continuous to discrete</u> ones, e.g., 512 candidates per layer -> 5 candidates per layer, <u>100x Less</u>;

Hardware-aware DNN Search Space Optimization (GPU)

Algorithm 2 GPU-Aware Model Optimization Algorithm.

- 1: **Input:** Model's initial layer width configs r[l], latency L[l][n], utilization U[l][n], and throughput T[l][n].
- 2: **Output:** Optimized model configs $R_{new}[l]$.
- 3: Identify candidates $C_l[m]$ for each layer l by Eq. 4.
- 4: Initialize latency & parameter gain list LG[l], PG[l].
- 5: for layers i = 1 to l do
- 6: Get LG_i , PG_i estimation by Eq. 5a and 5b.
- 7: Sort the layer index list by LG[l] or PG[l].
- 8: while layer index list is not empty do
- 9: Pop out layer j with $\operatorname{Argmax}_{j} LG[l]$.
- 10: Scale down $R_{j,new}$ by Eq. 8a for max latency gain.
- 11: while $\Sigma^l PG(R_{new}) \notin (-\tau, \tau)$ do
- 12: Pop out layer k with $\operatorname{Argmin}_k LG[l]$.

13: Scale up $R_{k,new}$ by Eq. 8b to balance param gain. 14: Get runtime latency evaluation L_{new} of config R_{new} . 15: **if** $L_{new} \leq L_{old} \times \delta$ [\leftarrow Targeted reduction ratio] **then** 16: Train and evaluate the model accuracy. 17: **else**

18: Set $\tau *= 2$ and repeat the algo. from line 9. 19: **Return** Optimized config R_{new} .

Figure 7. VGG pruning configuration optimization on HRank. We slightly scale down Conv1-Conv4 using minimal accuracy drop to trade for major latency reduction, while scale up Conv5-Conv12 to compensate the accuracy drop without obvious latency increment.

 Based on the hardware discrete search space optimization, we could <u>improve the search efficiency</u> of NAS methods, as well as <u>adapt/optimize the existed DNN architectures</u> on the given hardware.

Experimental Evaluation

Figure 8. ImageNet Accuracy Latency Trade-Off Comparisons. Compared to baseline EfficientNets (yellow), our GPU-aware optimized models achieve better accuracy latency trade-offs. Evaluated Platform: NVIDIA Titan-V GPU.

- Compared to SOTA Efficient Net:
 - <u>1.5X less latency;</u>
 - <u>+3.97% ImageNet accuracy;</u>

Table 2. Latency Optimization on SOTA Pruning Works. HRank: High Rank Pruning [CVPR20]. SOFT: Soft Pruning [IJCAI18].

[Titan-V]	Method	Params	#FLOPs	FLOP/s	Acc.%	Time (ns)
VGG16	HRank	1.90M	67.0M	2.41T	93.1	2.50E6
(CIFAR10)	Ours	2.85M	104.1M	3.90T	92.9	2.05E6 (-17.7%)
DeeNet56	HRank	0.48M	65.9M	0.83T	93.6	4.20E6
Kesnel56	Ours-1	0.50M	79.1M	1.00T	93.8	3.72E6 (-11.3%)
(CIFAR10) - (Ours-2	0.50M	75.1M	0.95T	93.5	3.51E6 (-16.3%)
	SOFT-1	0.53M	68.8M	0.88T	93.1	4.08E6
ResNet56	Ours	0.43M	71.4M	0.91T	93.2	3.52E6 (-13.7%)
(CIFAR10)	SOFT-2	0.45M	53.1M	0.68T	92.3	3.64E6
	Ours	0.43M	66.0M	0.79T	92.3	3.01E6 (-17.3%)

*Note that, SOFT-1 and -2 denotes two configs with different pruning rates from the original paper. The latency is evaluated on Titan-V with batch size = 128.

Table 4. Generalizability Evaluation on the Pascal P6000 GPU.

[P6000]	Method	Params	FLOP/s	Acc.%	Time (ns)
VGG16	HRank	1.90M	1.68T	93.1	4.15E6
(CIFAR10)	Ours	2.04M	1.86T	92.9	3.02E6 (-27.2%)
ResNet56	HRank	0.48M	0.84T	93.6	5.84E6
(CIFAR10)	Ours	0.50M	1.00T	93.7	5.32E6 (-9.0%)

<i>able 5.</i> Generalizability Evaluation on the Jetson Nano GPU.					
[JetsonNano]	Method	Params	FLOP/s	Acc.%	Time (ms)
VGG16	HRank	1.90M	35.5G	93.1	60.5
(CIFAR10)	Ours	2.04M	39.4G	92.9	48.1 (-20.5%
	HRank-1	0.48M	25.6G	93.6	82.1
ResNet56	Ours	0.50M	28.8G	93.7	68.0 (-17.1%
(CIFAR10)	HRank-2	0.24M	16.7G	92.3	67.2
	Ours	0.39M	24.3G	92.5	58.1 (-13.3%

Consistent Latency Reduction;

Generality Across GPUs:

• Volta Titan-V

•

- Pascal P6000
- Maxwell Jetson Nano

Outline: Efficient Deep Neural Network Design

Introduction

Motivation: Efficient Deep Neural Network Design

Efficiency on Static DNN Architecture Search

- Hardware-aware Design Space Optimization
- Single-Path Neural Architecture Search

Efficiency on Dynamic DNN Execution

- Dynamic Feature Map Pruning
- Hardware-oriented Deployment Optimization

Motivation: DNN redundancy exists in both filters & feature maps.

Convolution *im2col* implementation[1].

Conventional Filter Weights Pruning

[1] DeLTA: GPU Performance Model for Deep Learning Applications with In-depth Memory System Traffic Analysis

Motivation: Dynamic Input-based DNN redundancy exists in feature maps.

Olah, et al., "The Building Blocks of Interpretability", Distill, 2018.

- Feature map importance is very Sparse;
 - Bright components: Useful features;
 - Dark components: Non-useful features;

- For DNN-based classifiers, such feature
 - map redundancy can exist a lot.

Therefore, we propose to conduct **feature map redundancy elimination**, i.e., **dynamic feature map pruning**.

Antidote: channel-wise & spatial-wise feature map pruning

- Between any two conv layers, we use attention-based mechanism to prune non-important channels and spatial columns in feature maps;
- The output sparse feature map will consist of less channels and spatial columns to save next layer's computation.

Attention-based feature importance ranking

Spatial Attention:

$$A_{spatial}(F, h, w) = \frac{1}{C} \sum_{i}^{C} F_{h, w}(i).$$

Channel Attention:

$$A_{channel}(F,c) = \frac{1}{H * W} \sum_{i}^{H} \sum_{j}^{W} F_{c}(i,j)$$

Attention-based Pruning mask:

$$M(F,c) = \begin{cases} True, & \text{If } c \in topk(A_{channel}), \\ & k = int(p * C); \\ False, & \text{Otherwise.} \end{cases}$$

Case Study: Effectiveness of attention-based ranking

Fig. 2. Attention-based and Random Pruning Accuracy Drop Comparison.

- Attention-based ranking is very effective in evaluating feature importance:
 - With same pruning rate, 70% higher accuracy than random feature selection;
 - **60% feature map redundancy** can be eliminated without accuracy drop in VGG16;

- However, if we reach high feature pruning rate, the **accuracy drop** can still be non-negligible;
- Therefore, we propose training-phase optimization as a remedy: Training with targeted dropout.

Training-phase Optimization: <u>Targeted Dropout</u>

- During training, dropping out leastimportant features;
 - $F' = F \otimes M_{spatial}(h, w),$ $F'' = F' \otimes M_{channel}(c),$
- Advantages:
 - Resistance to accuracy drop;
 - No repetitive retraining.

Attention-based Targeted Dropout Training

Experimental Evaluation

CNN Models	Pruning Methods	Baseline Accuracy(%)	Baseline FLOPs	Final FLOPs	FLOPs Reduction(%)	Final Accuracy(%)	Accuracy Drop(%)
	L1 Pruning* [8]	93.3	-	2.06E+08	34.2	93.4	-0.1
VGG16 (CIFAR10)	GM Pruning* [20]	93.6	-	2.11E+08	35.9	93.2	0.4
	Proposed	93.4 93.3	3.13E+08	1.85E+08 1.46E+08	44.1 53.5	93.3 93.1	0.1
ResNet56	L1 Pruning* [8]	93.0	-	0.91E+08	27.6	93.1	-0.1
(CIFAR10)	FO Pruning* [21]	92.9	-	0.71E+08	43.0	92.0 93.3	-0.4
	Proposed	93.0	1.28E+08	0.80E+08	37.4	93.2	-0.2
	L1 Pruning* [8]	73.1	-	1.96E+08	37.3	72.3	0.8
VGG16	Taylor Pruning* [19]	73.1	-	1.96E+08	37.3	72.5	0.6
(CIFAR100)	Proposed: Setting-1	73.1	3.13E+08	1.87E+08	40.4	73.2	-0.1
	Proposed: Setting-2	73.1	3.13E+08	1.72E+08	44.9	72.9	0.2
	L1 Pruning* [8]	78.5	-	0.76E+10	50.6	76.6	0.8
VGG16	Taylor Pruning* [19]	78.5	-	0.76E+10	50.6	77.3	0.6
(ImageNet100)	FO Pruning* [21]	78.5	-	0.76E+10	50.6	79.5	-1.0
(Imagervet100)	Proposed: Setting-1	78.5	1.52E+10	0.74E+10	51.2	79.6	-1.1
	Proposed: Setting-2	78.5	1.52E+10	0.69E+10	54.5	79.4	-0.9

 TABLE I

 EXPERIMENT RESULTS ON CIFAR AND IMAGENET DATASETS.

* indicates the methods' performance is referred from [20], [21].

Across different datasets and models, our method could generally achieve 37%~54% FLOPs reduction with <1% accuracy drop, significantly outperforming previous state-of-the-art works.

Advantages of Antidote: Dynamic Feature Pruning

- Dynamic vs. Static: targeting at each image, more precise and aggressive.
 - For VGG16 on cifar10, traditional <u>static pruning</u> methods can remove about [17%, 10%, 10%, 45%, 65%] channels per block (General Redundancy on whole datasets).
 - Our <u>dynamic method</u> can remove [20%, 20%, 60%, 90%, 90%] channels (Per-input Redundancy).
- **Spatial-wise + Channel-wise:** Flexible & comprehensive redundancy elimination;
 - Filter pruning can remove **<u>channel redundancy only</u>**;
 - But for ImageNet-size input (224x224), <u>spatial</u>

<u>redundancy</u> is the main redundancy!

• We can prune 50~60% spatial feature columns for every layer for VGG on ImageNet.

Fig. 4. The redundancy composition varies in channel and spatial dimensions.

Hardware-oriented Deployment Optimization

Figure 2: The structural-spatial and channel feature map pruning bring the structural sparsity on ReRAM crossbar.

Table 3: Inference Latencies				
Network	Original	Ours	Speedup	
VGG-16 (ms)	0.39	0.31	1.3×	
ResNet-56 (ms)	2.87	2.67	1.1×	

Table 4:	Computing	Efficiency	Evaluation

Network	Computational Efficiency (GOPs/s/mm ²)	Power Efficiency (GOPs/W)	Area (mm ²)	Power (mW)
Baseline VGG	736.30	290.3	1.09	1078.48
Ours	938.42	1262	0.25	248.88
Relative Gain	1.3 ×	4.4 ×	4.4 ×	4.3 ×
Baseline ResNet	530.94	154.4	0.084	82.96
Ours	570.71	205.8	0.063	62.22
Relative Gain	1.1 ×	1.3×	1.3×	1.3 ×

On ReRAM-based crossbar architecture, such <u>spatial &</u> <u>column feature map pruning</u> enables <u>fine-grid sparsity</u>, which we could leverage to get for actual speedup.

Introduction

Motivation: Efficient Deep Neural Network Design

Efficiency on Static DNN Architecture Search

- Hardware-aware Design Space Optimization
- Single-Path Neural Architecture Search

Efficiency on Dynamic DNN Execution

- Dynamic Feature Map Pruning
- Hardware-oriented Deployment Optimization

