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Client Module: Unintended Activation Attacks

e Wake-up phrases are used to activate

the smart device
o  What if the device confuses words?
o  What if the device records other people in
the same room?
o  What if the device is tricked by a recording?

e What are some solutions?
o Use Wifi to detect human motion

o  Detect whether user is talking to human or
device




Client Module: Faked Response

e User misconceptions abound

o 30% of users have trouble turning off
smart device

o 78% did not use LED to check for
proper termination

e What if a malicious skill tricks the
user into thinking they switched to
a different app?

e What if a malicious skill fakes

termination?

e What are some solutions?

o Check smart device responses against
a black list



Client Module: Access Control Attacks

e Some apps may grant very broad

permissions to the user

o  What if a hacker can take advantage of this to
break into the house?

e What are some possible solutions?
o  Defensive coding strategies
o Security profilers
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Client Module: Adversarial Voice Samples

e Voice recognition technology is essential for personal assistants
o  What if we can perturb the voice command such that the personal assistant misinterprets it?
o  What if we can hide voice commands in songs?

e What are some possible solutions?

o  Retrain the model
o  Keep the architecture secret



Communication Module

M te-netflix-problems-2011-07-06.pcap

File Edit View Go Capture Ana Telephony  Wireless  To
e DDos Attacks $i580aa%
. , fite +
. Time Source Protocol Length Info
(@) Flood the server Wlth as many i 65.142415 192.168.0. .129.249. TcP 66 40555 » 80 [ACK] Seq=1 A Win=5888 Len=@ TSval=491519346 TSecr=551811827
' 4 65.1 1 .0. 174, : .22 HTTP 253 GET /clients/netflix/ application.swf?flash_ lash_ _2.18v=1.58&nr
. ; 65. 38 174.1 - 192.168.0. Tcp 88 - 48555 [ACK] Seq=1 Ack=188 Win=6864 Len=@ TSval=551811850 TSecr=491519347
requests as pOSSlble 65.240742 1 .228 19 .e. HTTP 828 HTTP/1.1 ved Temporaril
.241592 192.168.0. 21 174.129.249.228 TCP 66 48555 » 88 [ACK] Seq=188 Ack= =7424 Len=0
A A 3 242532 192. .21 192.168.8. DNS Standard query @x2188 A cdn-@.nflximg.com
. ereta ln 276870 .168.0. .168.8. DNS Standard query response 8x2188 A cdn-!
pp 277992 192.168.0. Tcp 37063 - 8@ [SYN] Seq=@ W L
i .297757 63.80.242. Tcp 74 80 > 37063 [SYN, ACK] Se
g .298396 192.168.0. .242.48 Tcp 66
o  Use packet metadata to predict ; e e =

808.242. 192.168.0. TCP 66

: 3 .321733 63.80.242. 192.168.0. TP 1514
voice command :
. Frame 349: 489 bytes on wire (3912 bits), 489 bytes captured (3912 bits)
. Mlt I\ /I AttaCkS Ethernet II, Src: Globalsc_88:3b:@a (f@:ad:4e:0@:3b:@a), Dst: Vizio 14:8

Internet Protocel Version 4, Sri 192.168.8.1, Ds 192.168.0.21
User Datagram Protocol, Src Port: 53 (53), Dst Port: 340836 (34@36)

(@) Intercept messages and Domain Name System (response)
delete/modify them Transactz:.o; I

Flags: @x818@ Standard query response, No error
1
ANsw
Authority RRs: 9
Additional RRs: 9
Queries
cdn-8.nflximg.com: type A, class IN

5 c dn-8.nfl
ximg.com

A ..). ".images
.netflix .com.edg
esuite.n et.

Identification of transaction (dns.id), 2 bytes rofile: Default



Response Generation Module: Out of Domain Attacks

e Chatbot is generally very adept at a select few domains
o What if we make out of domain requests?

e What are some potential solutions?

o Train a classifier to detect out of domain requests
o Improve network’s ability to quantify uncertainty



Response Generation Module: Adversarial Text Samples
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Response Generation Module: Language Model Attacks

e State of the art chatbots reply on language models like BERT
o  What if we can create malicious language models that sabotage the chatbot very discretely?

e What are some potential solutions?

o  Search for trigger words
o  Constantly vet language models



Response Generation Module: Adversarial Reprogramming
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Response Generation Module: Feedback Engineering

e Chatbot usually gets a reward signal from the user
e The system improves itself through either:

o  Retraining
o  Reinforcement learning

e What if we can discretely retrain the chatbot to use offensive language after
hearing certain trigger words?

e What if we can alter the reward signal and get the chatbot to adopt our malicious
policy?

e What are some possible solutions?

o  Make it harder to query the model multiple times
o  Separate training examples and response generation module



Database Module

e Database module houses a lot of sensitive information
o What if we launch an injection attack against it?
o  What if we manipulate the knowledge graph?

e What are some possible solutions?

o  Search database for injection vulnerabilities before deployment
o Clean the data used to train the knowledge graph



Conclusion
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