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Outline of Talk

) Microservice Placement and Migration Problem

) Design of Proactive Microservice Placement and Migration Policy

J Experimental Evaluation
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From Monoliths to Microservices
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Related Work

= [TON2019] proposes an MDP based service monolithic service migration strategy
= [TCC2019] proposes another MDP based service migration approach considering user mobility

= [INFOCOM2019a] proposes an approximation algorithm for service placement considering the
heterogeneous nature of edge computing systems

=[INFOCOM2019b] derive a static approximation algorithm to jointly consider service placement
and allocation strategies

= [SEC2017] proposes a multi-component service placement strategy by formulating a matching
problem augmented with a local search heuristic




Novelty of our study

= We consider the paradigm shift from monolithic services to microservices

= We formally model microservice placement and migration using Markov Decision Process (MDP)

= We present a reinforcement learning based proactive microservice placement and migration
strategy
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A Motivating Example

Time ¢ User Action Server-Service State
Oms No Services Deployed
8000ms 50ms u — movieStreaming initialize movieStreaming
75ms F1 — movieStreaming
100ms v — movieStreaming F7 — movieStreaming
initialize new task for v
110ms FE1 — movieStreaming, v¢q sk
3000ms | v exits movieStreaming FE1 — movieStreaming
5000ms u — addRating initialize addRating
5025ms E1 — addRating
7000ms | w minimizes addRating F1 — addRating
8000ms u — addReview initialize addReview
8025ms F> — addReview

On-Demand Placement
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A Motivating Example

Time ¢ User Action Server-Service State
Os No Services Deployed
50ms % — movieStreaming initialize movieStreaming
7hms FE1 — movieStreaming
100ms 1 — movieStreaming,
addRating
100ms v — movieStreaming E1 — movieStreaming, addRating
initialize new task for v
110ms /1 — movieStreaming,
addRating, addReview, vy, s
135ms 1 — movieStreaming,
addRating, addReview, viq sk
3000ms | v exits movieStreaming 1 — movieStreaming,
addRating, addReview
5000m.s u — addRating FE7 — addRating, addReview
7000ms | w minimizes addRating F1 — addRating, addReview
8000ms u — addReview state-aware migrate addReview
=RRERRR R 8010ms FE5 — addReview

Proactive Placement
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A Motivating Example

Time ¢ User Action Server-Service State
Os No Services Deployed
50ms © — movieStreaming initialize movieStreaming
75ms 1 — movieStreaming
100m.s E1 — movieStreaming,
addRating
100ms v — movieStreaming E1 — movieStreaming, addRating
initialize new task for v
110ms FE41 — movieStreaming,
addRating, addReview, vy, <k
135ms F41 — movieStreaming,
addRating, addReview, vy, sk
3000ms | v exits movieStreaming E1 — movieStreaming,
addRating, addReview
5000ms u — addRating FE1 — addRating, addReview
7500ms u — addRating migrate addRating, addReview
g ey ey ey ey oy g ey e 7555ms u — addRating E5 — addRating, addReview
8000ms u — addReview F> — addReview

Proactive Placement + Migration
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Application
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Reinforcement Learning Solution

Algorithm 1: Dyna-Q (JUse Dyna-Q : Model Based and Model Free

1 Initialize Q(s,a) and Model(s,a), Vs € S,Va € A(s)
2 while true do

JSimulation + Interaction

3 | s < observe the application state CJReward Function defined as a measure of
d| o ereedy(s.q) refetched and utilized services and
5 Observe the next state s’ and the reward obtained P o ’

6 | Update Q(s,a) using Equation 1 prefetched and unutilized services

7 | Model (s,a) < 1.8 : . o

s | fori=0...n do JPossible since we only transition upon
9 s + random state previously observed service invocations

10 a <— random action previously taken in s

11 T, SI — I\/fodel(s, CL) R — Z [li * C(Hresources)] - Z [/1’ * C(/—Lresources)]
12 Update Q(s,a) using Equation 1 ST HEfunused




Reinforcement Learning Solution

) Low Traffic some action receives a positive reward

) High Traffic same action may receive negative reward
1 Variance leads to confusion [ICLR2019]

) Heuristic Solution : Three types of MDPs for each Application — {high, medium, low} — use the
appropriate MDP depending on the traffic condition

) Capacity Constraint Heuristic : Allocate microservices greedily along the linear chain




Dataset

MEC Server Locations and Sample User Trajectory

° x® 2 " o4 (JSan Francisco Taxi Dataset for User Trajectories
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Accumulated Reward
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Average User Latency
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Average User Latency
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Memory Usage for Vary
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