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Mobile Vision Systems are Revolutionizing Our Lives Now
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Challenge

* Challenge: Each application (DNN) is resource demanding.

* A typical image recognition DNN designed for server/cloud takes
up to hundreds of milliseconds to compute in mobile devices.

* This is unacceptable for video processing pipeline that requires
high frame rate.



Typical Solutions

* Model Compression Techniques

* Quantization, Pruning, Knowledge Distillation, Efficient Convolution
Block.

* Do not Take Advantage of the Dynamics of Mobile Video Inputs.
* Not all images are created equal.
 Some images are ‘easy’ and some are ‘hard’ to recognize.

* FlexDNN Leverages these Dynamics to further reduce resource
demand.

 Complementary technique to model compression technique.



Dynamics of Mobile Video Inputs

Videos taken in real-world mobile settings show substantial dynamics in terms of
difficulty level across frames over time.
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Pilot Study: Dynamics of Resource Demand

* Ten model variants with different complexities for a 400-frame video.

 Model with lowest complexity that correctly recognizes the activity (Best Model).

 Compare to the model that correctly recognizes all the frames (One-Fit-All Model).
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The difference area between curves
indicate considerable resource
demand that can be reduced.



Pilot Study: Quantify the Benefit of Leveraging the Dynamics

Quantify the benefit in average CPU processing time of each frame (Samsung S8).
e Compare One-Fit-All Model and Best Model.
In reality, model switching causes extra overhead.
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Input-Adaptative On-Device Deep Learning

* No model switching overhead (Ideal).
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State-of-the-art Input-Adaptive Works

 BranchyNet

[Teerapittayanon et al.ICPR’16]

} Insert early exit branches into a backbone
- model and hence is not limited to certain

types of model. FlexDNN follows this line

of input-adaptive works.




Early Exit Technique
}

* Early exit is a classifier with convolutional Exit 3
layer(s) and linear layer(s) that are inserted at '

Linear
the early layers of a backbone DNN. o
|

Conv 3x3

* Able to identify and exit easy inputs without |
causing further computation. Conv 3x3
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Drawback (BranchyNet)

 The way BranchyNet design their early exit branches brings two drawbacks:

e Early exit itself consumes computation. Without careful design, it leads to suboptimal performance
of the input-adaptive model.

* Inserting larger amount of early exit will make the model less efficient by latency cumulation.
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Overview of FlexDNN

* A novel input-adaptive framework that enables computation-efficient DNN-
based on-device DL based on early exit mechanism.
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* As an overview, FlexDNN is a technique Regular DNN  Dataset DL P'atfomlﬂ
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architecture at optimal locations of a
backbone DNN. FlexDNN Input-Adaptive Trainer
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FlexDNN Input-Adaptive Trainer

e Component #1: Optimal Early Exit Architecture Search

e Component #2: Early Exit Insertion Plan

FlexDNN Input-Adaptive Trainer
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#1 Optimal Early Exit Architecture Search

* Motivation: early exits consume overhead. Hence, a lightweight early exit is
preferred. However, an extremely lightweight early exit could exit much less easy
frames, which diminishes the benefit of early exit.

* FlexDNN inserts over-parameterized early exit branches at each possible location
and prune the filters and layers until the accuracy of the early exit starts to drop.

* As aresult, the architecture of each inserted early exit achieves optimal trade-off
between early exit rate and computational overhead.
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#2 Early Exit Insertion Plan

* Motivation: by far early exits have been inserted at each possible location
throughout the DNN model and hence accumulate immense overhead

altogether.

* FlexDNN adopts a systematic approach to derive an optimal insertion plan of
early exits.

 We prune the most inefficient early exits.
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#2 Early Exit Insertion Plan

* To identify the most inefficient early exits, we define a metric R that quantifies the
quality of the trade-off between early exit rate and computational overhead of a
particular early exit.

 We remove early exits whose R values are less than or equal to 1.
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Evaluation

e Evaluation is on UCF-101 derived dataset.
 Backbone: VGG-16 and Inception-V3.
 Experiments are conducted on Samsung S8.
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Evaluation: Compared to BranchyNet

e Baselines: 1) BranchyNet; 2) Input-Agnostic-Lossless; 3) Input-Agnostic-Lossy

e Results: Compared to BranchyNet, FlexDNN reduces 28.4% and 49.3% on VGG and Inception-

V3, respectively.
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Contribution of FlexDNN

* Aninput-adaptive framework for computation-efficient DNN-based mobile
video stream analytics that achieves better performance compared to
state-of-the-art counterparts.

* FlexDNN addresses the limitations of existing solutions and pushes the
state-of-the-art forward through the approach for generating the optimal
architecture based on early exits for input adaptation.

 We experimentally demonstrate the effectiveness of input-adaptive for on-
device DL.
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