CloudSLAM: Edge Offloading of Stateful Vehicular Applications

Kwame-Lante Wright*, Ashiwan Sivakumar*, Peter Steenkiste*, Bo Yu†, Fan Bai‡

*Carnegie Mellon University, †General Motors
What is SLAM?

• Simultaneous Localization and Mapping (SLAM)

 • Generates 3D map of the environment

 • Estimates the pose (location and orientation) of a vehicle

 • Based on sensors such as stereo video or LIDAR

SLAM Challenges for Vehicles

• Installing high-performance compute infrastructure in a vehicle is complex and costly

• Storage requirement does not scale well

• Simplifying the SLAM implementation to limit resource usage lowers quality of results
CloudSLAM Goals

• Develop an offloading architecture for stateful, latency-sensitive applications

1. Utilize edge cloud resources to reduce CPU & memory load on the vehicle

2. Maintain accuracy similar to an unmodified SLAM implementation

3. Minimize network usage
Case Study: ORB-SLAM2

- State-of-the-art SLAM implementation

- Primary Modules
 - Tracking
 - Local Mapping
 - Loop Closing

- Previous trip data critical to achieving high accuracy
Options for Using the Cloud

• **Offloading** is simplest option but is not practical
 • Run SLAM fully in cloud
 • Requires too much bandwidth
 • Highly susceptible to network delay

• **Partitioning** is effective if done right
 • Frequently used but fast tasks executed on vehicle
 • Tracking & Local Mapping Modules
 • Slow but infrequently used tasks executed in cloud
 • Loop Closing Module
 • Uses bandwidth more efficiently
 • Tolerant of network delay
CloudSLAM System Design

• Loop Closing functionality moved into new Remote Mapping Module running in edge cloud
 • Reduces computation on vehicle while maintaining previous trip data to improve accuracy

• Map state is replicated: global map stored in cloud, local map stored on vehicle
 • Only recent data is relevant to Tracking & Local Mapping modules

• Challenges
 • Map state management
 • Limiting bandwidth usage
 • Maintaining accuracy
Map State Management

- ORB-SLAM’s modules all read and write to the same complex data structures
 - Traditional consistency models not suitable because of bandwidth usage and/or delays

- Consistency requirements for local and global map are loose
 - ORB-SLAM execution is not repeatable
 - two executions of the same video input will generate different results
 - Construction of map is based on sensor data, which itself is noisy

- Output-driven Consistency designed to focus on our actual needs
 - What we really care about is consistency of the pose output
 - Send keyframes from vehicle to edge as necessary
 - Feedback applied to manage tradeoff between high accuracy & low bandwidth
Limiting Bandwidth Usage

• Selectively sending keyframes reduces bandwidth consumption
 • Redundant information in consecutive images

• How to select which keyframes to send?
 • **Periodic Strategy** - send keyframes at a fixed time interval
 • For example, send keyframe once every 10 seconds
 • **Distance Strategy** - send keyframes at a fixed distance interval
 • For example, send keyframe once every 10 meters
 • Varies based on vehicle speed and therefore is more bandwidth efficient
Maintaining Accuracy

- **Adaptive Strategy** uses magnitude of pose corrections as an indicator of error in the pose output
 - Drives map consistency based on pose updates
 - If pose corrections are large, more keyframes are sent to improve consistency
 - Implemented as an extension of Distance Strategy
 - Dynamically tunes distance threshold based on pose correction magnitude
 - Multiplicative-increase, multiplicative-decrease
Evaluation Traces

- **Rectangular Trace**
 - Corporate campus
 - Duration: 128 secs
 - Top Speed: 15 mph

- **Circular Trace**
 - Suburban community
 - Duration: 200 secs
 - Top Speed: 24 mph
CloudSLAM Output Using Periodic Strategy

• Error metric is root-mean-square error (RMSE)
Impact of Link Latency

- CloudSLAM accuracy degrades as link latency becomes dominant portion of response time
- Need for low latency edge computing as opposed to cloud computing
Adaptive Strategy Performance

• If a pose correction’s magnitude is above the pose correction threshold, then keyframe rate is increased. Otherwise, it is decreased.

• Sending more keyframes addresses drift more quickly, resulting in smaller pose corrections.

CDF of pose correction sizes

$c = \text{pose correction threshold}$
Related Work

• Partition-based Offloading

• Edge-assisted SLAM
Conclusion

• CloudSLAM, an offloading architecture for stateful, latency-sensitive applications

• Output-driven Consistency, a mechanism for maintaining consistency between replicas that focuses on output instead of state

• Highlighted the need for access to edge computing resources with low link latency
Thank you!

kwame@cmu.edu