

EdgeCompression: An Integrated Framework for Compressive Imaging Processing on CAVs

Sidi Lu¹, Xin Yuan², Weisong Shi¹

¹Wayne State University, ²Nokia Bell Labs

Introduction: take CAVs as an example

- Fast high-resolution video processing
- Conventional approaches
 - Reduce frame rates
 - Reduce the frame size

losing informative high-speed info and/or small objects in frames

• Compressive Imaging (CI) camera

Optical-domain compressed images (measurements)

- Complicated algorithms to retrieve the desired signal
- High energy consumption
- Goal: AI + CI + CAVs
 - Accelerating accurate video analysis
 - Decreasing energy consumption

Key Concepts

- Vehicle-EdgeServer-Cloud closed-loop framework (EdgeCompression)
- Experiments with four public datasets
 - Detection accuracy of measurements generated by the CI camera
 - Close to the accuracy on reconstructed videos
 - Comparable to the true value

 Framework and methodology can be applied to regular datasets of the traditional camera

The proposed approach is generic

- EdgeCompression Framework
- Experiment Setup
- Results and Main Observations
- Conclusion

Vehicle-EdgeServer-Cloud Framework

Different Roles in EdgeCompression Framework

1) Vehicles:

- Energy-efficient network: make timely computation on measurements.
- 2) EdgeServer (more computational resources):
- *Reconstruct* high-speed data with a triggered event
- Verify the detection results of the Vehicle and send notifications

3) Cloud:

- *Aggregates* all useful information
- *Refine* the energy-efficient network on the Vehicle
- Big data analysis: traffic control and path planning

Using video CI as an example

Video Compressive Imaging

- 1) Video are modulated at a higher speed than the capture rate of the camera
- 2) Modulated frames are then compressed into a single measurement
- 3) Multiple frames can be reconstructed from every single measurement.
- Θ : element-wise product C_r : compression ratio

Framework Advantages

1) Save memory and bandwidth:

Every C_r frames collapsed to a single measurement

2) Save the computation:

The measurements captured by the CI cameras are already compressed

3) Save the energy:

- *Vehicle*: Detection directly on the measurements w/o reconstruction
- *EdgeServer*: only reconstruct video when the trigger is on

Dataset Selection

(a) AAU RainSnow Dataset

(b) BDD100K Dataset

(c) PDTV Dataset

- https://www.kaggle.com/aalborguniversity/aau-rainsnow
- https://bdd-data.berkeley.edu/

10/30/2020

- http://www.tft.lth.se/english/research/video-analysis/cooperation/publicdataset/
- http://dyntex.univ-lr.fr/database.html

(d) DynTex Dataset

Hardware Setup

Intel Fog Reference Design (FRD) NVIDIA GPU Workstation

We assume that a CAV is equipped with an Intel FRD, and the NVIDIA GPU Workstation is working as the EdgeServer.

	Intel FRD	NVIDIA GPU Workstation
CPU	Intel Xeon E3-1275 v5	Intel Xeon E5-2690 v4
GPU	NONE	4×11 GB GeForce RTX 2080 Ti
Frequency	3.6 GHz	2.6 GHz
Core	4	14
Memory	32 GB	64 GB
OS	Ubuntu 16.04.6 LTS	Ubuntu 16.04.6 LTS

Reconstruction Results

PSNR: signal-to-noise ratio between two images

Detection on the Measurements Directly

Detection Results

Experiment results in terms of mAP

G:

•

grey-scale video

M: measurements

R: reconstructed video.

 mAP refers to the mean
Average
Precision.

Cr = 10AAU BBD100k PDTV DynTex 100 % 80 60 40 20 0 YOLOG-R TinyG-G TinyG-M TinyG-R TinyM-M ∎AAU 94.20 54.58 83.95 85.64 92.28 BBD100k 87.49 39.87 61.01 72.48 85.71 PDTV 79.00 35.82 66.45 64.60 77.39 56.12 DynTex 90.10 78.45 89.40 88.26

Cr = 15

Observation #1: TinyG-M vs. TinyM-M

The mAP score of TinyM-M is significantly larger (almost double) than that of TinyG-M.

 Training the model specifically on the raw measurement is necessary for the accurate detection.

Observation #2: TinyM-M, TinyG-R, and TinyG-G

Vehicle detection results from the measurements (TinyM-M) achieve:

- Comparable detection results to the reconstructed video (TinyG-R)
- 2) Close to the detection results from the ground truth video (TinyG-G) across all compression ratios.

Do not need to reconstruct the high-quality data in real-time, and we can still use CI cameras for real applications in CAVs • Vehicle-EdgeServer-Cloud *closed-loop* framework

• This is the first work that provides an alternative method to achieve fast object detection *on measurements*.

• Our code is hosted at https://www.thecarlab.org/outcomes/software

lu.sidi@wayne.edu

https://www.thecarlab.org/