NanolLambda:
Faa$S at All Resource Scales for loT

B Speaker: Gareth George

Co-authors: Fatih Bakir, Rich Wolski, and Chandra Krintz
RACELab: https://sites.cs.ucsb.edu/~ckrintz/racelab.html

https://sites.cs.ucsb.edu/~ckrintz/racelab.html

Background

e |0T devices are increasingly prevalent producers of data

e Programming & processing data remains a challenge

o On device processing:
m Often difficult to implement
m Portability, security, maintainability all are challenges

o Cloud/ Edge Cloud processing
m Easyto program in high level languages
m Tools such as FaaS provide a homogenous and scalable execution environment
m Cloud introduces expensive network cost and latency

e |oT devices will produce 80 zettabytes a year (*IDC) by 2025

*IDC market analysis firm on IoT data https://www.idc.com/getdoc.jsp?containerld=prus45213219

https://www.idc.com/getdoc.jsp?containerId=prUS45213219

Background Q

What if we could bring Faas to the device?

The challenge is that FaaS is currently limited to the Cloud or Edge* l
e Data must be moved from device to data center
e High power cost for low power devices to transmit over WiFi l—ﬂ
e Poor network infrastructure in rural areas ?
e Existing FaaS runtimes are limited to Linux-based edge systems ARRL

*AWS GreenGrass and similar services

Introducing NanoLambda

e NanolLambda: platform for running FaaS handlers across all tiers
o On Device

o Cloud/ Edge
o Compatible with AWS Lambda

e Goals
o Ease of development
o Portability
o Small code and memory footprint
o Security
o Uniform programming methodology

e At the smallest scales

o ESP8266 with 96KB of ram and 512KB of program flash storage
o CC3220SF with 256KB of ram and 1MB of program flash storage

ESP8266 development board

Deploying Faa$ Functions

for comp p Loyme.
aws lambda create-function \
function-name scheduled_pred_main \
zip-file fileb://edgelambda.zip \
ndler edgelambda.new_accel_sample \
runtime python3.6 \
ipoint-url http://<lambda service address>:1100 \
uest \

no-verif

programmer deploys code to
NanoLambda Cloud/Edge service
with aws cli

NanoLambda
Cloud/Edge
1. stores code in object store service
2. compiles and caches compact
bytecode representation on-demand

hen loT devices find a handler is not cached
pr— when evi in ndleris n e

AR, A locally they request bytecode representation
XXX XXX0 XXX from NanoLambda service

NanoLambda Architecture

CSPOT Backend
Object Store

S3 API
Emulation
_Service _

Python 3.6
CSPOT
Handler

S,

CSPOT WooF
<+ |nvocation
Log

I Lambda API
Emulation

Service

loTPy
Code/API
translation
and
packaging
service

loTPY
on device
and remote
execution
capabilities

y
- 3

CSPOT WooF:
measurement

logs

)

with monitoring C++ threads

[S.ensors & drivers: custom OS]

NanoLambda Cloud/Edge

NanoLambda On Device

NanoLambda Architecture

Comprised of two core systems

e NanolLambda Cloud/Edge

o FaaS handler registry & edge execution environment
o Remote code compilation and bytecode delivery to |oT devices
e NanolLambda On Device

o Provides on-device handler execution capabilities with /oTPy
o Leverages Python VM isolation to provide isolation

loTPy Design

e Why python?

e Why not an existing interpreter like micropython?
o Lacks key embedding features
o Binary size - micropython 620KB binary vs |oTPy 290KB binary

e |OTPy features
o Lean memory footprint by leveraging NanoLambda Cloud/Edge for bytecode generation
o Object-oriented VM implementation & first class embedding support

e |0TPy provides a C/C++ interface for native extensions / functions
o Builtin libraries include: math, json, device, and interaction with NanoLambda

Cloud/Edge’s Lambda service

e Security

o Python VM provides memory protection and container-like isolation

NanoLambda Cloud/Edge

e Service provides two REST API servers offering
o Persistent object storage compatible with S3
o A FaaS service that deploys functions written for AWS Lambda
e Built with CSPOT -- a low level framework providing FaaS primitives
o S3isimplemented as a layer on top CSPOT's append only object storage
o Lambda is implemented with event handlers triggered by invocation log updates
o Handlers are run in Linux containers allowing for concurrent but isolated execution

e Provides a registry of function definitions stored in S3 service
e Binary API for fetching compiled function bytecode

NanoLambda On Device

e Runs python handlers on non-Linux IoT devices

e Much like NanoLambda Cloud/Edge, invocations triggered by log events
o Events can originate from sensors on device
o Data can also be delivered remotely over CSPOT’s network

e Each append runs a C-language handler function invoking lI0TPy

o On cold start function bytecode is requested from NanoLambda Cloud/Edge
o loTPy caches bytecode & interpreter state to accelerate future runs

Execution Offloading

NanoLambda On Device is code compatible with NanoLambda Cloud/Edge

e On Device supports devices as small as ESP8266 and the CC3220SF
e NanolLambda Cloud/Edge runs on Linux at the edge and in the cloud

Portability: The choice to use NanoLambda allows for On Device, at the Edge,
in the private Cloud, or directly on AWS Lambda

~ >

\ —

1O

Predictive Maintenance Application

e Predictive Maintenance is a technique using sensors to detect part failure
e We examine failure detection in motors using accelerometers
e Setup:

o Accelerometer attached to a motor reads vibration magnitude 5 times a second

o Datais appended to a WooF for persistence, a history of 32 records is kept.
o Each append triggers failure detection handler to run

e Handler is benchmarked running on NanoLambda On Device and
NanoLambda Cloud/Edge for various problem sizes and configurations

Predictive Maintenance Application

[XN]
def kstest(datalistl, datalist2):
nl = len(datalistl)
n2 = len(datalist2)
datalistl.sort()
datalist2.sort() eoce
jil=10 def ksprob(alam):
j2=0 fac = 2.0
(XN J oNe sum = 0.0
fnl = 0.0 termbf = 0.0
def new_accel_sample(payload, ctx): fn2 = 0.0
global fan_mdl while j1 < nl and j2 < n2: ?g;{%%gﬁ;!ﬁlaql):
transformed = [] dl = datalist1[j1] " fac*m;th.exp(az*j*j)
for record in payload: d2 = datalist2[j2] sum += term
transformed.append(magnitude(record)) if dl <= d2: if math.fabs(term) <= 0.001*termbf or math.fabs(term) <= 1.0e-8%sum:
payload = None fnl = (float(j1)+1.0)/float(nl) return sum
prob = kstest(transformed, reference) Jl4=1 fac = -fac
return str(prob) if d2 <= dl: termbf = math.fabs(term)
fn2 = (float(j2)+1.0)/float(n2)
ji2 +=1 return 1.0
dtemp = math.fabs(fn2-fnl)
if dtemp > d:
d = dtemp
ne = float(nl*n2)/float(nl+n2)
nesq = math.sqrt(ne)
prob = ksprob((nesq+0.12+0.11/nesq)*d)
return d, prob, ne

Plotting Power & Invocation Latency

Power Use Over Local Request Lifecycle for Problem Size 80

Power Use Over Local Request Lifecycle for Problem Size 20

_. 600 s —— Local Request
= —— Local Request £
E = 400 1
= 400 1 =
3 5 200
S 2001 g l |
g : L |
g € o; : . : : , . .
0 0 100000 200000 300000 400000 500000 600000 700000 800000

0 100000 200000 300000 400000 500000 600000 700000 800000

Time (us)
Time (us)
)) Power Use Over Remote Request Lifecycle for Problem Size 80
Power Use Over Remote Request Lifecycle for Problem Size 20 600 . ¥

0 § - Remote Request
= —— Remote Request
= £
£ — 400
~ 400 - 3
z g
d [a)
5 \LL 5 200 -
B &
& 0 . r ; ; ; : .

0 0 100000 200000 300000 400000 500000 600000 700000 800000

0 100000 200000 300000 400000 500000 600000 700000 800000

Time (us) Time (us)

Fig. 5. Comparison of power draw over request lifecycle for various KS
problem sizes using both remote and local strategies.

Naive Offloading Scheduler

Average Time (MS) Per Invocation vs Problem Size

—— Local Only Scheduler
. . 600 -
Naive a IgO rithm: —— Remote Only Scheduler

e Pick the lowest latency (time to result) AR

execution strategy based on history i
o Local (On Device) or Remote R
(Cloud) el
e Every 16 invocations reset the history to gm_
allow model to recover from network 3
spikes -

100 ~

20 40 60 80 100
ks problem size

Fig. 6. Comparison of average invocation latency for local invocation strategy,
remote invocation strategy, and offloading scheduler invocation strategy.

Naive Offloading Scheduler Power

Average Power (u)) Per Invocation vs Problem Size

70000 -

60000 -

50000 -

40000 -

Power Microjoules

30000 -

20000 A

—— Local Only Scheduler
—— Remote Only Scheduler
—— Naive Scheduler

10000 A

T T T T

20 40 60 80 100
ks problem size

Concluding Remarks

NanoLambda Contributions:

Power & Latency Savings
Ease of development
Reprogrammability
Portability

Security

Thank you!

Authors: Gareth George (Presentor), Fatih Bakir, Rich Wolski, Chandra Krintz

Contact: gareth@ucsb.edu

'Graphics: Flaticon.com'. This presentation has been designed using resources from Flaticon.com

mailto:gareth@ucsb.edu

