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Background

e |0T devices are increasingly prevalent producers of data

e Programming & processing data remains a challenge

o On device processing:
m Often difficult to implement
m Portability, security, maintainability all are challenges

o Cloud/ Edge Cloud processing
m Easyto program in high level languages
m Tools such as FaaS provide a homogenous and scalable execution environment
m Cloud introduces expensive network cost and latency

e |oT devices will produce 80 zettabytes a year (*IDC) by 2025

*IDC market analysis firm on IoT data https://www.idc.com/getdoc.jsp?containerld=prus45213219
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Background Q

What if we could bring Faas to the device?

The challenge is that FaaS is currently limited to the Cloud or Edge* l
e Data must be moved from device to data center
e High power cost for low power devices to transmit over WiFi l—ﬂ
e Poor network infrastructure in rural areas ?
e Existing FaaS runtimes are limited to Linux-based edge systems ARRL

*AWS GreenGrass and similar services




Introducing NanoLambda

e NanolLambda: platform for running FaaS handlers across all tiers
o On Device

o Cloud/ Edge
o Compatible with AWS Lambda

e Goals
o Ease of development
o Portability
o Small code and memory footprint
o Security
o Uniform programming methodology

e At the smallest scales

o ESP8266 with 96KB of ram and 512KB of program flash storage
o CC3220SF with 256KB of ram and 1MB of program flash storage

ESP8266 development board



Deploying Faa$ Functions

# for comp p Loyme.
aws lambda create-function \
function-name scheduled_pred_main \
zip-file fileb://edgelambda.zip \
ndler edgelambda.new_accel_sample \
runtime python3.6 \
ipoint-url http://<lambda service address>:1100 \
uest \

no-verif

programmer deploys code to
NanoLambda Cloud/Edge service
with aws cli

NanoLambda
Cloud/Edge
1. stores code in object store service
2. compiles and caches compact
bytecode representation on-demand

hen loT devices find a handler is not cached
pr— when evi in ndleris n e

AR, A locally they request bytecode representation
XXX XXX0 XXX from NanoLambda service




NanoLambda Architecture
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NanoLambda Architecture

Comprised of two core systems

e NanolLambda Cloud/Edge

o FaaS handler registry & edge execution environment
o Remote code compilation and bytecode delivery to |oT devices
e NanolLambda On Device

o Provides on-device handler execution capabilities with /oTPy
o Leverages Python VM isolation to provide isolation



loTPy Design

e Why python?

e Why not an existing interpreter like micropython?
o Lacks key embedding features
o Binary size - micropython 620KB binary vs |oTPy 290KB binary

e |OTPy features
o Lean memory footprint by leveraging NanoLambda Cloud/Edge for bytecode generation
o Object-oriented VM implementation & first class embedding support

e |0TPy provides a C/C++ interface for native extensions / functions
o Builtin libraries include: math, json, device, and interaction with NanoLambda

Cloud/Edge’s Lambda service

e Security

o Python VM provides memory protection and container-like isolation



NanoLambda Cloud/Edge

e Service provides two REST API servers offering
o Persistent object storage compatible with S3
o A FaaS service that deploys functions written for AWS Lambda
e Built with CSPOT -- a low level framework providing FaaS primitives
o S3isimplemented as a layer on top CSPOT's append only object storage
o Lambda is implemented with event handlers triggered by invocation log updates
o Handlers are run in Linux containers allowing for concurrent but isolated execution

e Provides a registry of function definitions stored in S3 service
e Binary API for fetching compiled function bytecode



NanoLambda On Device

e Runs python handlers on non-Linux IoT devices

e Much like NanoLambda Cloud/Edge, invocations triggered by log events
o Events can originate from sensors on device
o Data can also be delivered remotely over CSPOT’s network

e Each append runs a C-language handler function invoking lI0TPy

o On cold start function bytecode is requested from NanoLambda Cloud/Edge
o loTPy caches bytecode & interpreter state to accelerate future runs



Execution Offloading

NanoLambda On Device is code compatible with NanoLambda Cloud/Edge

e On Device supports devices as small as ESP8266 and the CC3220SF
e NanolLambda Cloud/Edge runs on Linux at the edge and in the cloud

Portability: The choice to use NanoLambda allows for On Device, at the Edge,
in the private Cloud, or directly on AWS Lambda
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Predictive Maintenance Application

e Predictive Maintenance is a technique using sensors to detect part failure
e We examine failure detection in motors using accelerometers
e Setup:

o Accelerometer attached to a motor reads vibration magnitude 5 times a second

o Datais appended to a WooF for persistence, a history of 32 records is kept.
o Each append triggers failure detection handler to run

e Handler is benchmarked running on NanoLambda On Device and
NanoLambda Cloud/Edge for various problem sizes and configurations



Predictive Maintenance Application

[ XN ]
def kstest(datalistl, datalist2):
nl = len(datalistl)
n2 = len(datalist2)
datalistl.sort()
datalist2.sort() eoce
jil=10 def ksprob(alam):
j2=0 fac = 2.0
( XN J oNe sum = 0.0
fnl = 0.0 termbf = 0.0
def new_accel_sample(payload, ctx): fn2 = 0.0
global fan_mdl while j1 < nl and j2 < n2: ?g;{%%gﬁ;!ﬁlaql):
transformed = [] dl = datalist1[j1] " fac*m;th.exp(az*j*j)
for record in payload: d2 = datalist2[j2] sum += term
transformed.append(magnitude(record)) if dl <= d2: if math.fabs(term) <= 0.001*termbf or math.fabs(term) <= 1.0e-8%sum:
payload = None fnl = (float(j1)+1.0)/float(nl) return sum
prob = kstest(transformed, reference) Jl4=1 fac = -fac
return str(prob) if d2 <= dl: termbf = math.fabs(term)
fn2 = (float(j2)+1.0)/float(n2)
ji2 +=1 return 1.0
dtemp = math.fabs(fn2-fnl)
if dtemp > d:
d = dtemp
ne = float(nl*n2)/float(nl+n2)
nesq = math.sqrt(ne)
prob = ksprob((nesq+0.12+0.11/nesq)*d)
return d, prob, ne




Plotting Power & Invocation Latency

Power Use Over Local Request Lifecycle for Problem Size 80

Power Use Over Local Request Lifecycle for Problem Size 20
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Fig. 5. Comparison of power draw over request lifecycle for various KS
problem sizes using both remote and local strategies.




Naive Offloading Scheduler

Average Time (MS) Per Invocation vs Problem Size
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Fig. 6. Comparison of average invocation latency for local invocation strategy,
remote invocation strategy, and offloading scheduler invocation strategy.



Naive Offloading Scheduler Power

Average Power (u)) Per Invocation vs Problem Size
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Concluding Remarks

NanoLambda Contributions:

Power & Latency Savings
Ease of development
Reprogrammability
Portability

Security



Thank you!
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