
NanoLambda:
FaaS at All Resource Scales for IoT

Speaker: Gareth George
Co-authors: Fatih Bakir, Rich Wolski, and Chandra Krintz
RACELab: https://sites.cs.ucsb.edu/~ckrintz/racelab.html

https://sites.cs.ucsb.edu/~ckrintz/racelab.html

● IoT devices are increasingly prevalent producers of data
● Programming & processing data remains a challenge

○ On device processing:
■ Often difficult to implement
■ Portability, security, maintainability all are challenges

○ Cloud / Edge Cloud processing
■ Easy to program in high level languages
■ Tools such as FaaS provide a homogenous and scalable execution environment
■ Cloud introduces expensive network cost and latency

● IoT devices will produce 80 zettabytes a year (*IDC) by 2025

*IDC market analysis firm on IoT data https://www.idc.com/getdoc.jsp?containerId=prUS45213219

Background

https://www.idc.com/getdoc.jsp?containerId=prUS45213219

What if we could bring FaaS to the device?

The challenge is that FaaS is currently limited to the Cloud or Edge*

● Data must be moved from device to data center
● High power cost for low power devices to transmit over WiFi
● Poor network infrastructure in rural areas
● Existing FaaS runtimes are limited to Linux-based edge systems

*AWS GreenGrass and similar services

Background

● NanoLambda: platform for running FaaS handlers across all tiers
○ On Device
○ Cloud / Edge
○ Compatible with AWS Lambda

● Goals
○ Ease of development
○ Portability
○ Small code and memory footprint
○ Security
○ Uniform programming methodology

● At the smallest scales
○ ESP8266 with 96KB of ram and 512KB of program flash storage
○ CC3220SF with 256KB of ram and 1MB of program flash storage

ESP8266 development board

Introducing NanoLambda

Deploying FaaS Functions

NanoLambda Architecture

Comprised of two core systems

● NanoLambda Cloud/Edge
○ FaaS handler registry & edge execution environment
○ Remote code compilation and bytecode delivery to IoT devices

● NanoLambda On Device
○ Provides on-device handler execution capabilities with IoTPy
○ Leverages Python VM isolation to provide isolation

NanoLambda Architecture

IoTPy Design
● Why python?
● Why not an existing interpreter like micropython?

○ Lacks key embedding features
○ Binary size - micropython 620KB binary vs IoTPy 290KB binary

● IoTPy features
○ Lean memory footprint by leveraging NanoLambda Cloud/Edge for bytecode generation
○ Object-oriented VM implementation & first class embedding support

● IoTPy provides a C/C++ interface for native extensions / functions
○ Built in libraries include: math, json, device, and interaction with NanoLambda

Cloud/Edge’s Lambda service

● Security
○ Python VM provides memory protection and container-like isolation

NanoLambda Cloud/Edge
● Service provides two REST API servers offering

○ Persistent object storage compatible with S3
○ A FaaS service that deploys functions written for AWS Lambda

● Built with CSPOT -- a low level framework providing FaaS primitives
○ S3 is implemented as a layer on top CSPOT’s append only object storage
○ Lambda is implemented with event handlers triggered by invocation log updates
○ Handlers are run in Linux containers allowing for concurrent but isolated execution

● Provides a registry of function definitions stored in S3 service
● Binary API for fetching compiled function bytecode

NanoLambda On Device
● Runs python handlers on non-Linux IoT devices
● Much like NanoLambda Cloud/Edge, invocations triggered by log events

○ Events can originate from sensors on device
○ Data can also be delivered remotely over CSPOT’s network

● Each append runs a C-language handler function invoking IoTPy
○ On cold start function bytecode is requested from NanoLambda Cloud/Edge
○ IoTPy caches bytecode & interpreter state to accelerate future runs

Execution Offloading
NanoLambda On Device is code compatible with NanoLambda Cloud/Edge

● On Device supports devices as small as ESP8266 and the CC3220SF
● NanoLambda Cloud/Edge runs on Linux at the edge and in the cloud

Portability: The choice to use NanoLambda allows for On Device, at the Edge,
in the private Cloud, or directly on AWS Lambda

● Predictive Maintenance is a technique using sensors to detect part failure
● We examine failure detection in motors using accelerometers
● Setup:

○ Accelerometer attached to a motor reads vibration magnitude 5 times a second
○ Data is appended to a WooF for persistence, a history of 32 records is kept.
○ Each append triggers failure detection handler to run

● Handler is benchmarked running on NanoLambda On Device and
NanoLambda Cloud/Edge for various problem sizes and configurations

Predictive Maintenance Application

Predictive Maintenance Application

Plotting Power & Invocation Latency

Naive Offloading Scheduler
Naive algorithm:
● Pick the lowest latency (time to result)

execution strategy based on history
○ Local (On Device) or Remote

(Cloud)
● Every 16 invocations reset the history to

allow model to recover from network
spikes

Naive Offloading Scheduler Power

Concluding Remarks
NanoLambda Contributions:

● Power & Latency Savings
● Ease of development
● Reprogrammability
● Portability
● Security

Thank you!
Authors: Gareth George (Presentor), Fatih Bakir, Rich Wolski, Chandra Krintz

Contact: gareth@ucsb.edu

'Graphics: Flaticon.com'. This presentation has been designed using resources from Flaticon.com

mailto:gareth@ucsb.edu

