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Abstract—This paper presents an analysis of the scalability
and performance of an edge cloud system designed to support
latency-sensitive applications. A system model for geograph-
ically dispersed edge clouds is developed by considering an
urban area such as Chicago and co-locating edge computing
clusters with known Wi-Fi access point locations. The model
also allows for provisioning of network bandwidth and process-
ing resources with specified parameters in both edge and the
cloud. The model can then be used to determine application
response time (sum of network delay, compute queuing and
compute processing time), as a function of offered load for
different values of edge and core compute resources, and
network bandwidth parameters. Numerical results are given for
the city-scale scenario under consideration to show key system-
level trade-offs between edge cloud and conventional cloud
computing. Alternative strategies for routing service requests
to edge vs. core cloud clusters are discussed and evaluated.
Key conclusions from the study are: (a) the core cloud-only
system outperforms the edge-only system having low inter-edge
bandwidth, (b) a distributed edge cloud selection scheme can
approach the global optimal assignment when the edge has
sufficient compute resources and high inter-edge bandwidth,
and (c) adding capacity to an existing edge network without
increasing the inter-edge bandwidth contributes to network-
wide congestion and can reduce system capacity.

Keywords-Cloud Computing, Mobile Edge Cloud, Fog Com-
puting, Real-time Applications, Augmented Reality, System
Modeling

I. INTRODUCTION

Edge clouds promise to meet the stringent latency require-

ments of emerging classes of real time applications such as

augmented reality (AR) [1] and virtual reality (VR) [2] by

bringing compute, storage and networking resources closer

to user devices [3], [4]. Edge compute resources which are

strategically placed near the users in the access network

do not incur the irreducible propagation delays associated

with offloading of compute intensive tasks to a distant data

center. In addition, the use of edge computing can also

lower wide-area backhaul costs associated with carrying user

data back and forth from the central cloud. AR and VR

applications enable users to view and interact with virtual

objects in real time, hence requiring fast end-to-end delivery

of compute services such as image analytics and video
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rendering. Previous studies [5]–[8] have shown that latency

associated with AR or gaming applications can be reduced

by migrating some of the delay-sensitive tasks computing

tasks to local servers, while maintaining global state in the

core cloud.

While edge clouds have significant potential for improved

system-level performance, there are some important trade-

offs between edge and core clouds that need to be consid-

ered. Specifically, core clouds implemented as large-scale

data centers [9] have the important advantage of service

aggregation from large numbers of users, thus making the

traffic volume predictable. Further, service requests entering

a large data center can be handled in a close to optimal

manner via centralized routing and load balancing [10]

algorithms. In contrast, edge clouds are intrinsically local

and have a smaller scale and are thus subject to significantly

larger fluctuations in offered traffic due to factors such as

correlated events and user mobility. In addition, we note that

edge computing systems by definition are distributed across

multiple edge networks and hence are associated with con-

siderable heterogeneity in bandwidth and compute resources.

Moreover, the data center model of centralized control of

resources is not applicable to a distributed system [11],

[12] implemented across multiple edge network domains,

possibly involving a multiplicity of service providers.

A general technology solution for edge clouds will thus

require suitable distributed control algorithms and associ-

ated control plane protocols necessary for realization. The

unique nature of the distributed edge cloud system poses

key design challenges such as specification of a control

plane for distributed edge, distributed or centralized resource

assignment strategies, traffic load balancing, orchestration of

computing functions and related network routing of data,

mobility management techniques and so on. In order to

address these challenges, a simulation based system model is

the foundation for understanding performance and evaluating

alternative strategies for any of the above design issues.

This paper presents an analysis of the scalability and

performance of a general hybrid edge cloud system which

supports latency-sensitive applications. The goal is to pro-

vide a better understanding of key system design parameters

such as the proportion of resources in local cloud vs. data

center, fronthaul and backhaul network bandwidth, relative
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Figure 1. General Multi-tier Edge-cloud Network Architecture

latency/distance of core and edge clouds, and determine their

impact on system level metrics such as average response

time and service goodput. Using the model described here,

we seek answers to the following questions: (a) How much

load can an edge cloud network support without affecting

the performance of an application; (b) How does the value

of the application delay-constraint affects the capacity of the

system; (c) What is the impact of offered load and resource

distribution on goodput; (d) Under what circumstances can

the core cloud perform better than an edge network and vice-

versa; and (e) What is the impact of inter-edge (fronthaul)

and edge-to-core (backhaul) network bandwidth on system

capacity?

We use a simulation model to study a city scale general

multi-tier network as shown in Fig. 1 containing both edge

and central cloud servers. The model is used to obtain

system capacity and response time for an augmented reality

application while analyzing the impact of key parameters

resource distribution and fronthaul/backhaul bandwidth. A

general optimization framework for the distributed system

is proposed and compared with distributed algorithm ap-

proaches. The rest of paper is organized as follows. Section

II demonstrates the augmented reality application with two

use-cases and discusses the need of edge clouds to ful-

fill their low-latency requirements. Section III details the

system model with an emphasis on system design, and

performance model to analyze edge clouds using a city

scale network including models for application, compute and

latency. A baseline distributed resource allocation approach

for selecting an edge cloud for an AR application is also

detailed in Section III. Section IV presents the performance

evaluation of the baseline approach. Section V proposes and

evaluates a capacity enhancement heuristic (ECON) for real-

time applications. Numerical results to compare ECON and

the baseline are given in Section VI. Section VII provides

related work in the field and finally, Section VIII concludes

the paper.

II. AUGMENTED REALITY AND EDGE CLOUDS

Augmented reality is gaining popularity in numerous

fields such as healthcare, visualization, entertainment and ed-

ucation. Most of the commercially available AR devices like

Atheer AiR [13], Microsoft Hololens [14] and Google Glass

[15] have limited power, storage and on-chip computation

capabilities for example currently Hololens has storage ∼64

GB and RAM ∼2GB. In turn, these devices often rely upon

offloading storage as well as compute to an architecturally

centralized cloud server while ensuring application response

time.

The Quality of Experience (QoE) perceived by a user

running an AR application using cloud services is a complex

combination of network bandwidth, network traffic and

compute capabilities of the cloud. First, the bandwidth from

end–user to a cloud data center is the minimum bandwidth

available across all the hops in the network path, which

could be significant when cloud is located far from the user.

Second, the network traffic depends upon the network load

and congestion, and varies for each individual local network.

Edge cloud computing (denoted as ”edge” in the follow-

ing discussions) promises to alleviate the shortcomings of

the cloud server by bringing computation, networking and

storage closer to the user and providing fast response, con-

text awareness and mobility support [16]. Therefore, edge

computing can be viewed as having the same centralized

cloud resources scattered at the mobile network edge and

accessed through fast Wi-Fi or 5G access networks. This

approach has the potential to provide tightly bounded service

response time thereby creating a geographically distributed

heterogeneous computing and communication system.

Edge computing does not replace but complements the

cloud infrastructure as edge clouds are resource limited in

terms of bandwidth and compute. The multifaceted edge

system therefore must be studied in conjunction with the

existing core cloud for different user requirements, appli-

cation types, edge assignments and QoS constraints. Thus,

for a resource constrained system it is required to allocate

resources per request while taking system capacity into con-

sideration. This leads to a nonlinear optimization problem

[17] due to multiple factors affecting the capacity including

but not limited to network bandwidth, resource availability

and application type. In order to understand the capacity

constraints of a hybrid edge cloud system for a latency

sensitive application, we first, analyze the system taking the

AR application as an example and later generalize to other

applications.

A. Use Case Scenario

Figure 2(a) shows the process flow of our implementation

of a demo AR application using Microsoft Hololens. A client

sends a continuous video stream to the edge server which

processes the information based upon application type and

returns output to the client. The video stream (30 fps) is

processed by OpenCV [18] 3.3 running on Intel i7 CPU

980, 3.33GHz and 15GB RAM taking ∼20 ms time for

processing each frame. The edge server is connected to the
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Figure 2. AR Use-case Scenario Set-up: (a) AR Application Flow (b)
Smart Meeting Application using Indoor Navigation and (c) Annotation
based Assistance

Figure 3. Timing Diagram for the AR Applications: (a) Smart Meeting
Application using Indoor Navigation and (b) Annotation based Assistance.

client in two hops: (i) edge to first hop router (bandwidth:

932 Mbps) and (ii) router to Hololens (bandwidth: 54 Mbps).

The following use-cases are evaluated.

Smart Navigation. A user enters a building. The edge in

the building has her contextual information from calender

entries and GPS. As shown in Fig. 2(b) the user is navigated

to meet a person in the building using a set of cubes

appearing on the device as she moves. Achievable latency

is critical here because real-time activities of the user can

be disrupted by late arrival of AR information.

Annotation based assistance. In this scenario, a user looks

at an object having a set marker through Hololens with an

intention to get supplementary information about the object.

In Fig. 2(c), user looks at the printer and the status, ink level,

number and current jobs are annotated on the user’s display.

B. Application Flow Timing Diagram

Figures 3(a) and (b) show (not to the scale) timing

diagrams of a packet flow in the system for smart meeting

and annotation based assistance application respectively. The

network delay in both the cases is kept below 10 ms by

deploying edge cloud services a single hop away from

the AP. In both the scenarios, the processing delay, path

finding in the navigation and OpenCV image processing

in the annotation application, can be a major bottleneck.

The following techniques are used in our implementation to

lower the total response time as compared to the traditional

core cloud based services: (i) reduction of network latency

via higher bandwidth and closer edge cloud service; (ii)

passing minimum processed information to the client such

as end-to-end coordinates (8 Bytes) per query in case of the

navigation and 64-1500 Bytes per frame processed for the

annotation application, and (iii) offloading multiple tasks to

the edge cloud to minimize local processing at the UE. The

AR implementation serves as a guide to the parameters used

in the system model described in the next section, which

assumes a low-latency requirement (< 50 ms) to run AR

applications with acceptable subjective quality [8].

Using our deployed AR applications, this section confirms

that: (a) the total application latency can be brought down

by reducing the number of hops and increasing available

access bandwidth, and (b) although edge cloud lowers the

network latency, application processing latency contributes

significantly to the total latency for AR applications.

III. SYSTEM MODEL

A. System Design

The system diagram of the hybrid edge cloud under con-

sideration is shown in Fig. 4. Each AP is equipped with an

edge cloud with a configurable compute resource capacity.

In general, a compute resource represents a machine or a

group of machines (cluster) also known as cloud or edge

rack. A rack has limited capacity to support users for their

computational requirements. For instance, an AR application

requires computation to process video/image stream and

receive their response back from the server. The edge rack

in our design has maximum five processors each having

3.33 GIPS processing speed. The central cloud server is

placed at Salem, Oregon (OR; location chosen to relate with

commercially available central clouds) which again has a

configurable capacity. The compute capacity is defined as

the number of servers available at the edge cloud and/or

at the central cloud. The inter-edge bandwidth is varied

from 1 Gbps to 100 Gbps and AP-Cloud bandwidth from

10 Gbps to 500 Gbps. The special case of unconstrained

inter-edge and AP-cloud bandwidth is also considered. The

central controller has the capability to collect network and

compute parameters from all the edge clouds and the core

cloud. The system design parameters are listed in Table I.

In this study, the total amount of compute available at

the edge clouds and core cloud is assumed to be fixed. This

assumption holding the compute cost constant allows us to

fairly analyze the impact of varying other key system param-

eters such as % of edge servers or core/edge bandwidth. In

our simulation, we increase the resource density of already

deployed edge clouds by removing and redistributing com-

pute resources from the central cloud thereby keeping the

overall compute resources for the whole system unchanged.

We use Chicago, the third most populous city in US, as

a test-case considering locations of 11,00 WiFi APs [19]

as shown in Fig. 5. The number of hops from Chicago to
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Figure 4. Hybrid Edge Cloud System Diagram

Table I
SYSTEM DESIGN PARAMETERS

Parameter Value/Range
AR Bit Rate 42.48 or 66.24 Mbps

AP-Cloud Bandwidth 10–500 Gbps
Inter-edge Bandwidth 1-100 Gbps
Core Cloud Resources 0, 20, 40, 60 or 100%
Edge Cloud Resources 0, 20, 40, 60 or 100%

Core Cluster 0-5500 servers
Edge Clusters 0-5500 servers

AR Latency Requirements 50-100 ms

OR varies from 10 to 20 (including switches) and takes

around 5-6 hops to reach the cloud server gateway whereas

the average latency in US ranges from 13 ms to 106 ms

[20] based on a simple ping test of 64 bytes packet from

various locations. The mean local delay in Oregon is as low

as 13 ms. It is to be noted that the AR application’s bit

rate increases rapidly with resolution for instance a 160x120

pixels video needs around 1.7 Mbps whereas a 640x480

pixels video requires 27 Mbps continuous uplink bandwidth

(assuming 30 fps, 24 bit per pixel) which goes up to 432

Mbps for 1920x1080 video. For annotation based assistance,

assuming each frame is processed for information, relevant

data is queried from the database and sent to the user, the

required downlink bandwidth varies from 54–600 Mbps.

The response from the server is sent to the UE as multiple

packets (100–1500 Bytes) per frame processed. The uplink

bandwidth is assumed to be from 27–300 Mbps as listed

in Table II. For the simulations in this paper, we used

1280x720 and 1026x576 video size chosen randomly for

each user and maintained throughout. Note that the uplink

bandwidth requirement for an AR application is more than

the download bandwidth due to its uplink video/downlink

processed information characteristic which is quite different

from most web traffic today. We model the network based

on the type of application and its latency requirement.

We run an AR application at the UE which sends a video

stream to the server while server computes the contextual

information and sends back the output to the user. The

Figure 5. Wi-Fi APs Placement in Chicago City

application is annotation-based assistance using AR wherein

a user gets information about surrounding annotated on his

AR device as described in Section II. Annotation-based

assistance can be used in various application scenarios. For

example, a policeman looks at a license plate of a car while

driving and the information about the owner gets displayed

on the device. The license plate can also be run against a

list of stolen car and can be immediately reported to the

policeman.

Table II
SIMULATION PARAMETERS

Parameter Value
Area 5.18 km2

Number of APs 1.1K
Number of Users 55K

Distribution of Users Random
Bandwidth (Uplink) 27, 150 and 300 Mbps

Bandwidth (downlink) 54, 300 and 600 Mbps
Packet Size 1500 Bytes

Edge Resources (baseline) 5 Machines
α 2
β 1
γ 0.1
δ 1
ρ 0.9
w 0.5
p 10

B. Performance Model

In this section, we describe system modeling aimed

at evaluating user performance and system capacity as a

function of key design parameters. A multi-tier edge-cloud

system as shown in Fig. 4 can be divided into user, network

(data and control) and computation plane. Our system de-

sign is a hierarchical composition of compute and network

elements. The computation at edge or cloud is similar in

functionality but different in terms of resources availability

as the core cloud has a single big pool of shared resources

while each edge cloud has limited resources closer to the

user. The following discussion presents application, compute

and latency modeling.
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1) Application: In our model, the application is defined

by a four tuple < V,G, S, L > where V denotes the compu-

tational task per unit time ranging from [1, n], n ∈ Z
+. Each

AR application requires these tasks to be completed within

a specified real-time threshold latency in order to be useful

to the AR application. In case a task is not completed within

the application latency threshold, the goodput of system

goes down. G denotes the geolocation of the UE. A city

is considered to be a collection of Gi blocks (assume as

cells of a cellular network), i ∈ [1, N ] where N is the total

number of geographical blocks. For simplicity, we divide

the geographical area into square Gi’s. Analyzing the users

served by each block provides us meaningful information

if we need to upgrade the capacity of an edge cloud in the

block. Binary S ∈ {0, 1} denotes the availability of the edge

cloud in the geographical area G of a user. Unavailability

of an edge cloud may mean that there is no physical edge

cloud present or the edge cloud of that region has run out

of capacity in which case, a neighboring edge cloud can

be chosen or the user can be routed to the central cloud.

For delay-tolerant applications, routing a user to the central

cloud frees resources at the edge to serve latency sensitive

applications. Finally, L ∈ (0, dmax) represents the maximum

tolerable latency for the said application.

2) Compute: The delay due to computation is modeled

using a multi-server queuing model. The edge cloud is like

a mini data center where tasks arrive from geographically

distributed users, processed by the available resources in the

edge cloud and depart. Therefore, as the number of trans-

actions in the system increase when the system load rises

these tasks are queued till they are processed. This scenario

can be best represented by employing an M/M/C queuing

model [21]. Each edge or central cloud processes multiple

service requests in a work-conserving FCFS queue with

assumed infinite buffers. The overall latency is dependent on

the arrival rate λ, service rate μ and the number of servers

c. It can be noted that as the system computation power is

constant, increasing capacity at the edge will mean removing

equivalent resources from the central cloud implying a rise in

queuing delay at the cloud. As the system load increases, the

arrival rate, λ, rises thereby increasing the total computing

latency per task V as dcomp = 1/(cμ−λ) where μ = f/K,

f being the rated speed in instructions per second and K is

number of instructions required per task.

For a given set of static users, the system load is pro-

portional to the number of active users and the rate of

application requests per second. In our model, we assume

55K users and Load=1 is defined as 10% of the the users

are running the application. Load=10 implies that all 55K

users are running the AR application 100% of the time. In

general, average time spent by a task in the server is the sum

of transmission delay, queuing delay and processing delay,

which is calculated using the M/M/c queuing model as given

below in Eq. (1-3).

dnode = W +
1

μ
+ ttx = PQ ∗ ρ

λ(1− ρ)
+

1

μ
+ ttx (1)

PQ =
(cρ)

c

c!

1

1− ρ
p0 (2)

p0 =

[
c∑

k=0

(cρ)
k

k!
+
(cρ)

c

c!

1

1− ρ

]−1

(3)

Here, dnode is the total time spent by a task V at the edge

cloud or the core cloud, W is the wait time in the queue,

PQ is the queuing probability, ρ is the server utilization, c
are number of servers at each edge or total server at the

cloud, p0 is the initial probability, and ttx is the average

transmission time for a task at an edge as noted in [22] given

by ttx = (N ∗ r)
∞∑
j=1

j(1− Φ)
(j−1)

Φ, where Φ is the non-

outage probability of a link implying available bandwidth

for a task, r are the number of tasks per user per second

and N is the total number of users in the system. In view of

shared bandwidth on inter-edge links, ttx can be simplified

as blink/rusers where blink is the total bandwidth of a link

and rusers are number of total tasks run by all the users at

an edge. For large c, to avoid involved calculations in Eq.

(2), we split cloud computing resources into set of uniform

clusters where a selected cluster is one serving the lowest

number of concurrent tasks.
3) Latency: The overall latency of an application has

several components including irreducible propagation delay,

the transmission delay, routing node delays and the cloud

processing time. For a core cloud server, which carries ag-

gregated traffic, there is also a Software Defined Networking

(SDN) switching latency. As the number of users increase in

a geographical region, the bandwidth is shared among them

costing more transmission delay. For a cloud only model

when there are no edge servers, the total cloud latency can

be stated as:

Lcloud = (α+δ)∗Dmin(UE,APs)+(β+γ)∗DAP−cloud+dnode
(4)

Eq. 4 shows that a closest AP is chosen to route a

user to the cloud. Here, α and δ are the proportionality

constants for uplink and downlink bandwidth from UE to

AP link respectively, and β and γ are the similar factors for

AP to cloud uplink and downlink bandwidth respectively.

Dmin(UE,APs) is distance from UE to nearest AP and

DAP−cloud is the distance from AP to the central cloud.

It is noted that the uplink bandwidth usage for the AR

application is much higher than that of the downlink as

mentioned earlier. When resources are available at the edge,

the total edge latency can be represented as:

Ledge = (α+ δ) ∗Dmin(UE,APs) + dnode + ds (5)

In Eq. 5, ds ≥ 0 is the control plane switching latency from

an edge at AP to another AP’s edge in case of unavailable
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resources which is assumed to be between 1–5ms. The

response time for an application is the sum of transmission

delay, propagation delay, switching delay (if any), queuing

delay and computation delays in both the cases.

A core cloud-only system is defined as one with no edge

cloud available. The edge-only system does not have any

core cloud and if the load exceeds the available computa-

tional resources, a request is queued until it is processed. We

also consider hybrids of core and edge based on the percent-

age parameter that splits computing resources between the

two.

C. Edge Selection for an AR Application

Edge selection in a system for a given traffic load can be

achieved using multiple approaches depending upon whether

the system has centralized or distributed control. The net-

work routing information that is available to all the routers

can be used to deliver the service request to the nearest edge

cloud — the edge cloud then independently decide to serve

the request based upon resource availability or can route

the user to the central cloud. A queuing model (M/M/c)

is used to predict the estimated service time for a request

apart from networking delays (control plane), propagation

delays and transmission delays (available bandwidth). This

approach works well for scenarios with evenly distributed

users and network resources. However, this simple nearest

edge cloud routing strategy does not work well when the

user distribution is not geographically uniform ascertained

by our simulation showing only 10% improvement in the

average system response time as compared to a cloud-only

system.

An alternative distributed approach improves upon simple

anycast by having routers maintain compute resource avail-

ability states of neighboring edge clouds. This may involve

the use of overlay protocols to exchange cloud state in a

distributed manner [23], [24]. A user is routed to the nearest

edge first which makes one of the following decisions: (i)

serve the request, (ii) route to a neighboring edge with

available resources, or (iii) route to the central cloud. The

decision at the edge is based upon application requirement

and traffic load. For an AR application, the decision metric

selects the closest edge to the UE which can serve the UE in

Ledge ≤ dmax. The algorithm for this approach is as detailed

below.

D. Baseline Approach

Algorithm 1 shows the pseudo-code for the baseline edge

cloud selection approach adopted in our study. The algorithm

is invoked whenever the default edge cloud is unable to

serve the user’s demand (line: 2). It then scans the states of

neighboring edges to find the best edge which can serve the

user within the specified latency threshold. This approach re-

lies upon shared resource and bandwidth information among

neighbors. The list of neighbors is defined as p closest edge

Algorithm 1: Finding neighboring edge with available

resources for an AR application

1 function AvailableNeighbor (a, b);
Input : Neighbor resource and bandwidth si and bi
Output: TorF

2 Condition: TotalDelayEdge ≥ delayth
3 while(NeighborEdge)

4 if TotalDelayNeighborEdgei ≤ delayth then
5 return TRUE;

6 else
7 return FALSE;

8 end

clouds from the current edge location. For finite p the order

of state update messages to be exchanged is ∼ N ∗p2 where

N is the number of edge clouds, and is thus an acceptable

overhead for small to moderate values of p.

This section detailed our system and performance model.

A baseline algorithm which scans the states of neighboring

edge clouds to find the best edge which can serve the user

within the specified latency threshold is developed. Next

section evaluates the performance of baseline algorithm.

IV. PERFORMANCE EVALUATION OF BASELINE SYSTEM

In this section we discuss the capacity of different edge

cloud systems with respect to traffic load, resource distri-

bution and inter-edge bandwidth. Consider a system with

following compute resources: (i) core cloud only, (ii) edge

cloud only, and (iii) core cloud plus edge cloud, where in

each case, the total amount of resources are same. Major

system parameters used in the simulation are summarized

in Table II.

A. Impact of Network Bandwidth Parameters

Figure 6 shows the average response time for core cloud

only and edge only networks for different system load when

there is no limit on inter-edge and edge-cloud bandwidth.

As there is no bandwidth limitation, the queuing delay

dominates and crosses the 50 ms response time threshold

after the system load is more than 60% for edge only system

without bandwidth constraints. In the case when the core

cloud has infinite capacity we observed that the network

latency affects the total application response time.

Figure 7 illustrates the impact of constraint bandwidth

AP-cloud system on the average response time. Here, the

total bandwidth limit is set between edge network and the

core cloud cluster. For a 500 Gbps AP-cloud bandwidth, for

given system, the average response time compares with that

of an unconstrained bandwidth case while for 50 Gbps case,

it rises exponentially as the load increases. In case of lower

bandwidth cases like 10 Gbps and 25 Gbps, the system is

unable to handle higher load. As a bandwidth-constrained
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Figure 6. AR Application Average Response Time for Core Cloud only
and Edge only Networks with Increasing System Load

Figure 7. AR Application Average Response Time for Core Cloud only
System with Increasing System Load and Different Uplink Bandwidth

cloud system cannot compete with an edge-only system in

terms of response time, further discussions in this paper will

assume a bandwidth-unconstrained cloud.

Figure 8(a) plots the average response time for the core

cloud as well as edge only system with different inter-edge

bandwidth. On one hand, the extreme fronthaul bandwidth

of 100 Gbps edge-only compares with the unconstrained

bandwidth edge-only system and therefore all the edge

resources are utilized. On the other hand, after the system

fills up at Load=7, core cloud only system outperforms

the edge only system with 1 Gbps inter-edge bandwidth.

The reason is that for the baseline case, when an edge

fills up the capacity, it routes the request to a neighboring

edge utilizing inter-edge bandwidth. As the finite inter-edge

bandwidth is split between multiple application flows, the

propagation delay and queuing delay rise which in turn

increases the average response time for higher load. In the

baseline approach, the edge decides whether to send the

request to a neighboring edge or to the central cloud. For

1 Gbps inter-edge bandwidth, the average response time for

Load=1 is as low as 30 ms while for Load=10 case, it rises to

170 ms as the bandwidth exhausts and queuing delay rises.

A delay more than 100 ms is unsuitable for most of the AR

applications. As the bandwidth doubles, for Load=10 case,

the average response time is ∼120 ms. Increasing bandwidth

lowers the average response time for a completely loaded

system but beyond 10 Gbps there is no significant advantage

Figure 8. Average Response Time Comparison for Core Cloud and Edge
Only System, with Different Load and Inter-edge Bandwidth for Baseline

visible for the baseline case as there are still significant

queuing delays for a loaded edge at an AP (or neighboring

AP). After a load point, there is no dip in response time

irrespective of how good the fronthaul connectivity between

edges is. In this case, there is a crossover around Load=7 so

we compare the CDF of core cloud only and edge-only with

the 1 Gbps case in Fig. 8(b). A linear rise in response time

can be observed for the static load case implying that the

inter-edge bandwidth of 1 Gbps is insufficient to run such a

heavily loaded system.

B. Impact of Resource Distribution

In this subsection, we analyze the impact of the com-

pute resource distribution between the core cloud and edge

cloud on the average response time. There are a total of

5.5K processors each having 3.33 GIPS speed, available

as compute resources which are equivalent to 1.1K full

edge racks. Figure 9 shows the baseline latency performance

for a core cloud-only system, edge-only system and cloud-

edge (CE) system for the simulation parameters listed in

Table II. CE80-20 implies that 80% compute resources are

available at the cloud and 20% are placed at the edge

near the APs and so on. The inter-edge bandwidth has no

limitation in this case. As expected, the edge only system

outperforms irrespective of load. As the resources are moved

from central cloud to the edge, the response time CDF moves

towards the left close to the edge-only system. When the CE

system does not find resources available at the neighboring

edge using Algorithm 1, the request is routed to the core

cloud. Therefore in each of these cases, except for the edge-

only case, a few requests are bound to have response time

as close as core cloud-only case. As expected, increasing

resources at the edge brings response time down in the case

of unconstrained bandwidth. Next we consider more realistic

scenarios with constrained bandwidth.

Figures 10(a) and (b) compare average response time

in CE28 and CE82 for the baseline with respect to inter-

edge bandwidth and load respectively. Response times for

inter-edge bandwidth of 10, 50 and 100 Gbps are close to

each other for all the load cases for both scenarios. This
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Figure 9. Response Time CDF for Different Resource Distribution for
Baseline without Inter-edge Bandwidth Limit

Figure 10. Average Response Time for Edge Cloud System for Different
Load, Resource Distribution and Inter-edge Bandwidth for Baseline

implies that increasing inter-edge bandwidth indefinitely

cannot improve the system performance when using the

simple scheme of filling neighboring edge resources. Figure

10(a) also highlights the fact that when edge resources are

higher than the core cloud for a low inter-edge bandwidth,

beyond a load point, the core cloud-only system performs

better. This means that for a highly loaded system, if fast

edge connectivity is unavailable, it is better to use the core

cloud.

C. Impact of AR Application Traffic Parameters

Figure 11 establishes the fact that inter-edge bandwidth

plays a crucial role in the system. For the CE28 case, when

the cloud-edge resource distribution is 20%-80% and inter-

edge bandwidth is 1 Gbps, average response time increases

at a faster rate than that of the CE82 case. The reason is that

in the baseline scenario for CE28, an edge might be able to

find a neighbor with available capacity but the connectivity

is not sufficient to reach to that neighbor. In the case of lower

or no edge resources, the core cloud is immediately favored

and therefore performs better than the edge cloud scenario

as can be observed from the crossover point at Load=8 case.

One more point of interest in Fig. 11 is between Load=5

and Load=6 where all the CE cases intersect. Figure 12

shows the average response time with different inter-edge

bandwidth and resource distribution for baseline when

Figure 11. Average Response Time for Edge Cloud System with Different
Load and Resource Distribution for Baseline. Inter-edge Bandwidth=1Gbps.

Figure 12. Average Response Time for Edge Cloud System with Different
Resource Distribution and Inter-edge Bandwidth for Baseline. Load=5.

Load=5. Here, for the CE82 case, increasing inter-edge

bandwidth does not boost the system performance as com-

pared to the CE28 case because for the low edge resources

case, increasing inter-edge bandwidth cannot decrease the

processing delays at the edge. For a system with high edge

resources, a higher inter-edge bandwidth is therefore needed

to maintain AR performance.

Similarly, for the Load=6 case, Fig. 13 plots average

response time vs. resource distribution for different inter-

edge bandwidths. Again, for a 50 Gbps inter-edge bandwidth

system, a faster drop in the average response time can be

observed for the CE28 case when 80% resources are at the

edge. For a 1 Gbps inter-edge bandwidth system, the average

response time is slightly higher for the CE28 system than

for the CE46 system.

Using our designed system and performance model, we

make following observations for the baseline scenario: (a)

for unconstrained compute resources, the edge cloud contin-

ues to perform better than the core cloud due to its vicinity

to the users (lower network latency), (b) increasing core

network bandwidth beyond a load point does not lower

the total application latency as the compute latency takes

over, (c) for higher system load, the propagation delay and

queuing delay rise because finite inter-edge bandwidth is

divided among multiple application flows, (d) indefinitely

increasing fronthaul edge cloud connectivity does not im-

prove the response time after a load level, and (e) for lower
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Figure 13. Average Response Time for Edge Cloud System with Different
Resource Distribution and Inter-edge Bandwidth for Baseline. Load=6.

inter-edge bandwidth case, distributing more resources at the

edge clouds only worsens the application performance.

V. ECON: ENHANCED CAPACITY EDGE CLOUD

NETWORK

The baseline approach considered in Section IV relies on

distributed control to select the best available neighboring

edge cloud which might be sub-optimal in terms of overall

system capacity. A more general approach is to select an

edge cloud based upon global information about network and

compute resources available at a logically centralized point

such as an SDN controller. The idea is to use the complete

network view before assigning an application/user to an edge

cloud or deciding to route it to the core cloud. We call this

approach Enhanced Capacity Edge Cloud Network (ECON).

This section describes the ECON method and compares its

performance with the baseline method.

Definition 1: An edge or cloud is ”usable” for a request

i if the latency La
i for the user running an application a is

below the latency threshold for given application La
Th i.e.

La
i ≤ La

Th. Here, La
i is simply equal to Lcloud or Ledge

with different dnode and ds.

A ”usable” server is best for a user request in terms of

service quality whereas the overall system capacity might

not be optimal with this assignment. For example consider

a user’s application latency threshold 110 ms which may be

assigned to an edge server serving request within 30 ms. This

assignment will hamper performance of another needy user

who required 35 ms latency but cannot be accommodated

due to unavailable resources at the edge.

Definition 2: ”delay-constraint (%)” of an edge-cloud

system is defined as the number of requests out of hundred

served below the application response time threshold, La
Th.

For a specific value of La
Th, the delay-constraint can also

be interpreted as system capacity. For instance, a delay-

constraint of 10% for a 15 ms threshold implies that system

can accommodate only 10% of the total requests and 90%

requests will only consume resources to lower the goodput.

This means for 90% of the requests, the assigned edge

resources are ”not usable”.

Percentage delay-constraint, C = nTh

N ∗ 100, where nTh

are requests served within threshold response time and N
are the total number of requests in the system. A system with

high C for a threshold is required to run latency sensitive

applications.

A. ”Usable” Edge-Cloud Optimization

Assigning requests to a ”usable” server is similar to

capacity optimization of an edge-cloud system for given

compute as well network resources and application delay

fulfillment. This problem is equivalent to the maximum

cardinal bin packing and hence is NP-hard [25], [26]. We can

model the global optimization to maximize usable server s
for N requests, where each request i is assigned to the server

s, as:

max
s

∑
n∈N

I{sn>0} (6)

subject to:

La
i (s) ≤ La

Th, ∀sn > 0, n ∈ N (7)

I{sn>0} being the indicator function with values 1 or 0

depending upon if such a server is available or not for a given

request which means if it can serve the request in application

response time threshold. Mapping users to ”usable” server

is NP-hard problem as explained earlier thus requiring an

alternative approach.

The total average processing delay, dcomp, at the cloud

or edge, comprise of a waiting delay in the queue and a

processing delay associated to the type of application. At

each node, there is a transmission time, ttx associated with

each task V , adding which to dcomp provides total time,

dnode, spent at a server. Therefore, for such a system, we

can formulate Eq. (6) as minimizing dnode of the system for

all the users, while compromising on the optimality, instead

of a ”usable” server problem as follows:

P1 : min
M∑
i=1

(
N∑
j=1

dj,iproc + ditx + dis) (8)

subject to:
La
j ≤ La

Th, ∀j ∈ N (9)

bi,upmin ≤ bai ≤ bi,upmax, ∀i ∈ M (10)

bi,down
min ≤ bai ≤ bi,down

max , ∀i ∈ M (11)

M∑
i=1

ci ≤C (12)

Equation 8 defines the optimization problem with Eq. (9)

as delay constraint, Eq. (10) and Eq. (11) as bandwidth con-

straints for uplink and downlink each user application and,

Eq. (12) as capacity constraint of each node respectively. As

explained earlier, bai can be computed as bi/redge. Again,
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the problem is similar to maximum cardinality bin packing

problem and is NP-hard. Therefore, to find the ”usable”
server, we need to fix a user to a nearby edge and find the

Pareto optimal edge for the next user sequentially satisfying

the application latency constraint. This can be done by

omitting the switching delay. Therefore, the problem can

be simplified as (with same constraints as above) follows

assuming ditx constraint is satisfied by bandwidth splitting

for each request.

P2 : min
M∑
i=1

N∑
j=1

dj,iproc (13)

Equation 13 establishes that for a latency sensitive AR

application, finding the ”usable” server for a user means

we need to place the task to a server which is nearby to the

user in strict network sense having low load, latency and

high available bandwidth. The delay minimization objective

function fills up the edge resources before routing a task

to the central cloud. The latency and bandwidth of chosen

server are estimated using the exponential moving average:

xp∗wx+(1−wx)x, with wx as weight factor for x, xp is the

previous value, x is the previous average and x is latency

or bandwidth parameter. We call this approach ECON and

results are compared with the baseline in next section.

VI. ECON VS. BASELINE

A. Resource Distribution and Inter-edge Bandwidth

ECON relies upon filling up the edge resources before

routing to the central cloud. Figures 14(a) and (b) compare

average response time for CE28 and CE82 cases when the

inter-edge bandwidth is 1 Gbps. For an edge-favored CE28

scenario in Fig. 14(a), ECON and baseline have similar

performance because finding an available resource in ECON

is equivalent to finding a neighbor in the baseline which

has high probability when edge resources are 80%. When

the resources are cloud-favored i.e. CE82 in Fig. 14(b),

for a lightly loaded system, ECON performs better as it is

able to find the resources anywhere in the network without

additional queuing delays at the edge. For a highly loaded

system, finding an available edge is more expensive than

routing the request to the cloud itself and therefore baseline

outperforms ECON in case Load>5.

B. Application Delay Constraints

Figure 15 presents the delay-constraints for unlimited

fronthaul bandwidth edge-cloud system for CE82 case when

Load=1. As application latency threshold increases, delay-

constraint rises meaning if an application has a latency

threshold of 100ms, about 60% requests can be fulfilled by

the cloud-only system whereas the edge-only system will

be able to fulfill all the requests. As shown in the plot,

without inter-edge bandwidth limits, ECON performs better

Figure 14. Average Response Time Comparison for ECON and Baseline,
for Different Load and 1 Gbps Inter-edge Bandwidth

Figure 15. Impact of Application Latency Threshold on Delay-constraint
Percentage for ECON and Baseline without Inter-edge Bandwidth Con-
straints

than the baseline as it fills up maximum edge resources

before routing any request to central cloud.

Figures 16(a) and (b) compare a 1 Gbps edge-favored

(CE28) system with Load=1 and Load=10. For a lightly

loaded system when the edge cloud has more resources,

ECON and baseline have similar performance as both of

these schemes are able to find an available resource at the

edge and 1 Gbps bandwidth is sufficient to route the request

to a neighboring edge. In the case of a heavy load scenario,

both of these schemes again have similar performance but

the core cloud-only system is able to serve more requests

than any of these schemes when the application latency

threshold is more than 140 ms. This study shows that for

elastic applications such as email, a cloud-only system is

sufficient and can even perform better when compared to an

edge-cloud system with low bandwidth. Also, for the low

bandwidth scenario, routing to the cloud is more helpful in

improving application latency performance than maximizing

usage of edge clouds as illustrated by Fig. 16(b) as baseline

outperforms ECON when application latency threshold is

more than 100 ms.

Figures 17(a) and (b) show the difference between ECON

and baseline delay-constraint performance for Load=1 and

Load=10 for CE82 case. For a lightly loaded system, and

lower available inter-edge bandwidth, ECON is able to fill

up edge clouds before routing to the cloud and therefore
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Figure 16. Edge Cloud System Capacity for Different Load and Edge
Favored Resources (Inter-edge BW=1 Gbps)

Figure 17. Edge Cloud System Capacity for Different Load and Cloud
Favored Resources (Inter-edge BW=1 Gbps)

performs better than baseline. When the load is higher, when

ECON tries to fill up all the edge resources which are only

20% here, with 1 Gbps inter-edge bandwidth connectivity,

it introduces more transmission delays and therefore the

baseline outperforms. In this specific case, the cloud-only

system overtakes first ECON and later the baseline case

when the application can withstand higher latencies.

1) Edge-favored vs. Cloud-favored: Figures 18(a) and

(b) compare edge and cloud favored resources respectively

when inter-edge bandwidth is 10 Gbps. Figure 18(a) shows

that for an edge-favored case when most of the resources

are available at the edge, a baseline neighbor selection

scheme performs equally well as ECON which selects the

best of all edge resources for the request. For the cloud

favored resource case shown in Fig. 18(b), ECON performs

better than baseline as each of the edges has sufficient

bandwidth to reach a far away available edge resource.

Therefore, when sufficient bandwidth is available, it is better

to choose an edge even if there are fewer resources available

as the queuing time at an edge can be compensated by

faster request transfers. On the other hand, if the inter-

edge bandwidth is low, instead of trying to maximize edge

resource utilization, it is good to send the request to the

cloud if the application can withstand the resulting delay.

2) Goodput: As discussed earlier, AR applications are de-

lay sensitive and discard packets which arrive late. Goodput

is defined as the number of useful (on time) bits per second

Figure 18. ECON and Baseline Comparison for Edge and Cloud Favored
Resources (Inter-edge BW=10 Gbps)

Figure 19. Impact of Load on Goodput Ratio of ECON and Baseline in
an Edge Cloud System for Real-time Applications

delivered to UEs running the AR application. Therefore,

even when the system throughput is high, the goodput

could remain low due to high proportion of late arrivals.

The capacity improvement can be studied by analyzing a

geographic block, G′is level of goodput using our simulation

tool. If goodput is lowest in a block, this is an indicative of

a need to augment additional edge resources to the serving

edge. Figure 19 shows the normalized goodput ratio of

ECON and baseline for different resource distribution and

load. For an unconstrained inter-edge bandwidth system,

the goodput ratio of a cloud-favored system is more than

that of an edge-favored one as ECON tries to find the

best available edge resource as compared to the neighbor

selection baseline scheme. In a cloud-favored system, the

edge has minimal resources and therefore each edge requires

sufficient bandwidth to transfer requests to other edges

which may be far away. The edge-favored system cannot

be significantly improved with ECON as there are ample

neighboring edges available from the baseline and therefore

finding a more optimal edge tends to increase the network

delay. Also, as the system load increases, there is a rise in

the queuing delay at the edge server and therefore the system

performance is similar for ECON as well as baseline in this

case.

This section compared baseline scenario with a global

edge assignment approach called ECON. We found that: (a)

for an edge-favored resource system, ECON and baseline
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have similar application response time performance, (b) for

a cloud-favored resources and lightly loaded system, ECON

performs better than the baseline, (c) maximizing edge

clouds usage for lower inter-edge bandwidth hampers the

average system response time, and (d) for elastic applications

such as email, a cloud-only system is sufficient and can even

perform better as compared to an edge-cloud system with

low bandwidth.

VII. RELATED WORK

Edge cloud solutions have been proposed for a number

of emerging scenarios including Internet of Things (IoT)

[27], Cloud of Things (CoT) [28]–[31], health analytics

[32] and autonomous driving [33], [34]. The term cloud is

generically used to describe a remotely located on-demand

computing and networking system along with its typical

storage functionality. Architectures such as Mobile Edge

Cloud (MEC) [17], [25], fog [35] and edge [36] computing

bring these resources close to the user to support faster

networking and ultra-low latency applications.

Serving IoT devices using edge clouds is proposed in

[37]–[39] with or without virtualization techniques to pro-

vide local compute offload, nearby storage, and networking.

Real-time applications such as autonomous driving, traffic

monitoring/reporting, and online multi-player 3D gaming

have also been considered, [8], [40]–[42]. Applications of

ICN (Information Centric Networking) have been proposed

in [43] as a means to reduce network complexity through

named services and content. A three-tier cloud of things

(CoT) system is modeled in [44] which identifies edge cloud

is a key design element for time-constraint applications.

Attempts are also made to provide hierarchical models

of edge clouds thereby enabling aggregation capabilities

similar to data center networks [45]. Understanding network

topology is a critical step in analyzing a cloud or edge

network mainly due to effect of routing on latency and

throughput. Attempts have been made to characterize the

network using geographical properties in [46] using data of

autonomous system (ASes) and their relationships, to create

a network topology for realistic analysis.

Motivated by faster compute and connectivity needs of

newer AR/VR applications, an edge-centric computing is de-

scribed in [47]. A QoS-aware global optimal edge placement

approach is described in [48]. An energy efficient resource

allocation strategy is proposed in [49] considering link layer

parameters. A small cell based multi-level cloud system

is simulated in [50]. Existing literature either relies on a

central controller for an optimal edge placement or the use

of new network hierarchy to realize improvements in system

performance [51], [52]. Studies aimed at determining the

overall capacity of a edge cloud system to support multiple

applications using a city-scale network are lacking in the

existing literature. To the best of our knowledge, this is one

of the early attempts to characterize such a hybrid system

with respect to edge-cloud resource distribution, inter-edge

bandwidth, AP-cloud bandwidth and system load.

VIII. CONCLUSION

This paper provides a framework for modeling and an-

alyzing capacity of a city-scale hybrid edge cloud system

intended to serve augmented reality application with service

time constraints. A baseline distributed decision scheme is

compared with a centralized decision (ECON) approach for

various system load, edge-cloud resource distribution, inter-

edge bandwidth and edge-core bandwidth parameters. The

results show that a core cloud only system outperforms the

edge-only system when inter-edge fronthaul bandwidth is

low. The system analysis results provide guidance for se-

lecting right balance between edge and core cloud resources

given a specified application delay constraint. We have

shown that for the case with higher inter-edge bandwidth

and edge computing resources, a distributed edge selec-

tion achieves performance close to centralized optimization,

whereas with ample core cloud resources and no bandwidth

constraints, ECON provides a lower average response time.

Our study shows that adding capacity to an existing edge

resource without increasing internetwork bandwidth may

actually increase network-wide congestion and can result in

reduced system capacity. Future work includes evaluating al-

ternative application profiles with task splitting and compute

prediction, analyzing the impact of mobility on the system

capacity and edge placement using the city-scale edge cloud

testbeds such as COSMOS [53].
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