
Vigilia: Securing Smart Home Edge Computing
Rahmadi Trimananda

University of California, Irvine
rtrimana@uci.edu

Bin Xu
University of California, Irvine

xub3@uci.edu

Ali Younis
University of California, Irvine

ayounis@uci.edu

Brian Demsky
University of California, Irvine

bdemsky@uci.edu

Bojun Wang
University of California, Irvine

bojunw2@uci.edu

Guoqing Xu
University of California, Los Angeles

harryxu@cs.ucla.edu

Abstract—Smart home IoT devices are becoming increas-
ingly popular. Modern programmable smart home hubs such
as SmartThings enable homeowners to manage devices in
sophisticated ways to save energy, improve security, and pro-
vide conveniences. Unfortunately, many smart home systems
contain vulnerabilities, potentially impacting home security and
privacy. This paper presents Vigilia, a system that shrinks the
attack surface of smart home IoT systems by restricting the
network access of devices. As existing smart home systems are
closed, we have created an open implementation of a similar
programming and configuration model in Vigilia and extended
the execution environment to maximally restrict communica-
tions by instantiating device-based network permissions. We
have implemented and compared Vigilia with forefront IoT-
defense systems; our results demonstrate that Vigilia outper-
forms these systems and incurs negligible overhead.

Keywords-smart home; security; privacy; programming
model;

I. INTRODUCTION

Smart homes enable appliances to be controlled locally
via the network and typically enable more sophisticated
control systems [67]. Companies have launched a wide range
of smart-home devices, many of which have serious security
issues. A study reported vulnerabilities in 70% of the devices
investigated [17]. Bugs have been found in a wide range
of devices including routers [69], [71], smartcams [58],
[14], [73], baby monitors [56], [60], [31], smart hubs [72],
sprinklers [6], smart plugs [35], and smart fridges [1]. The
problems in these systems are more basic than missing buffer
checks—some of these devices have unsecured embedded
web servers that allow anyone to update the firmware, have
default passwords, use insecure authentication, or use clear
text communications. To demonstrate the severity of the
problem, we assigned public IPs to our webcams (§VII-C).
All of them were hacked within 15 minutes!

Part of the promise of smart home systems is the ability
of collections of devices to work together to be smarter
and more capable than individual devices. Achieving this
requires integration between different devices, which may
come from different manufacturers with entirely different
software stacks, e.g., Nest Thermostat, Wemo Switch, etc.
Smart home hubs support integration between these dis-

parate devices, but existing hubs including SmartThings have
serious security weaknesses.

SmartThings: SmartThings is a smart home environ-
ment created by Samsung [61]. This environment allows
smart home devices (e.g., SmartThings and third-party de-
vices) to be connected to a home network, monitored, and
controlled through the SmartThings phone app. Among these
devices, Zigbee or Z-Wave devices are connected to the
LAN via the SmartThings smart hub, while WiFi devices
are directly connected to the LAN.

The SmartThings environment also allows the user to
create smart home apps (SmartApps) to manage connected
devices to perform specific functionality. For example, a
smart switch app that manages motion sensors and switches
could use the sensors to detect motion as a trigger to turn
on a switch. SmartApps communicate with devices through
device handlers. A device handler exposes device capabil-
ities that allow the SmartApp to access device features,
e.g., switch.on() and switch.off() for a switch. Most
SmartApps and device handlers run on the SmartThings
cloud and have the local smart hubs relay commands to
the physical devices. SmartApps are written in Groovy,
a managed programming language running on top of the
JVM [27].

The SmartThings environment has the following weak-
nesses:

(1) Device Vulnerabilities: Many IoT devices connect
directly to the home Internet connection and communicate
with the hub via the LAN or the cloud. Many of these
devices either intentionally trust communication from the
local area network (e.g., Wemo, LiFX), use inadequate
authentication mechanisms (e.g., a short PIN in the case of
D-Link), or have backdoors (e.g., Blossom sprinkler) that
make them vulnerable to attack.

(2) Trusted Codebases with Bad Security Records (e.g.,
JVMs): The SmartThings system executes device drivers
and applications on a JVM and relies on the JVM to provide
safety. Bugs in the JVM could potentially allow applications
to subvert the capability system and access arbitrary devices.

(3) Excessive Access Granted to Cloud Servers: The
SmartThings system executes most applications and device
handlers on their cloud servers and uses the hub to relay

74

2018 Third ACM/IEEE Symposium on Edge Computing

978-1-5386-9445-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SEC.2018.00013

commands to the local devices. The hub punches through
the home firewall to give the SmartThings cloud servers
arbitrary access to communicate with any local device. Note
that while compromised firmware updates could concep-
tually be used to obtain similar access, the scenarios are
fundamentally different because firmware updates are often
signed. Thus, with appropriate key protection mechanisms,
they can be made difficult for attackers to compromise.

(4) Excessive Access Granted to Device Handlers or
SmartApps: SmartThings device handlers have the ability
to capture all SSDP network traffic to the hub [37], commu-
nicate with arbitrary IP addresses and ports by reconfiguring
the device’s network address, and send arbitrary commands
to arbitrary Zigbee devices [20].

When a homeowner purchases a new IoT device, they
first make it available to their SmartThings hub. SmartThings
provides drivers for a wide range of third party devices; users
can also write their own drivers or import third-party driver
code. Some popular devices such as the Nest thermostat can
only be integrated into SmartThings via third-party drivers
that are not subject to any code review process.

When a SmartApp is first installed, the user configures it
by selecting the devices to be monitored and controlled. This
process grants the SmartApp the capabilities to access those
devices. While the SmartThings capability system appears
at first glance to provide strong security assurances, it can
be easily subverted. For example, a SmartApp can conspire
with a device handler to subscribe to all SSDP traffic to the
hub, open arbitrary connections to cloud servers, or obtain
arbitrary access to LAN and Zigbee devices.

Our initial goal was to secure a popular real-world sys-
tem such as SmartThings. However, SmartThings is closed
source—we could not directly enhance it as we do not have
access to its source code. As a result, we had to develop
a new distributed IoT infrastructure that closely follows the
programming and computation model of SmartThings. We
demonstrate the viability of our approach by implementing
Vigilia on top of this new system. Our idea is generally
applicable to SmartThings and any other smart home IoT
infrastructure that uses similar models.

Vigilia Approach: We developed Vigilia, a new cross-
layer technique to harden smart home systems. First, Vigilia
restricts network access—Vigilia uses a similar program-
ming model as SmartThings but leverages the configuration
information that is already available to also restrict network
access. Vigilia makes the network primarily responsible for
the security of IoT devices—Vigilia implements a default
deny policy for all IoT devices and smart home applications.
Access is only granted when user has explicitly configured
a smart home application to use a specific device. A key
advantage of this approach is that it becomes less critical
that end users keep every IoT device fully patched. At the
same time, by leveraging the configuration information that

is already present, Vigilia’s security mechanisms never get
in the way of legitimate computations.

Second, Vigilia provides more fine-grained access control
to specific devices. In Vigilia, a smart home application
controls a specific device via a device driver. The interaction
between the smart home application and the device driver
occurs through remote method invocation (RMI). Device
features are exposed as API methods in the device’s driver
class. This is implemented as capability-based RMI that only
allows a limited set of API methods to be called depending
on the configuration (§III). Thus, this mechanism provides
more fine-grained access control to specific devices on top
of the network policy restrictions.

Vigilia implements a lightweight approach to securing
smart home systems at the network and operating system
layers. This work leverages the observation that most IoT
devices are not general-purpose; they do not need to commu-
nicate with arbitrary machines and thus do not require full
network access. By enforcing access at the network level,
Vigilia shifts the primary burden for security from individual
devices to the network. The net effect is that system security
no longer relies on every device manufacturer securing their
devices and end users keeping devices patched—helping
users secure IoT devices when manufacturers do not.

This paper makes the following contributions:
• Automatic Extraction of Enforcement of Security

Policies: It presents techniques that automatically ex-
tract and enforce fine-grained security policies on ap-
plications written using a programming model that is
similar to SmartThings.

• Secure Enforcement Mechanism: It uses a set of
router-based techniques including modifications to the
WiFi stack that ensure that compromised devices cannot
subvert the enforcement mechanisms by masquerading
as the router or another device.

• No Spurious Failures: It statically checks that pro-
grams will respect the policies at runtime and thus will
never spuriously fail due to the security enforcement
mechanisms.

• Implementation: It provides an open implementation
of a smart home programming model that is
similar to mainstream (close) platforms. We
have made this implementation available at
http://plrg.eecs.uci.edu/vigilia/.

• Evaluation: We have evaluated Vigilia on four smart
home applications that control commercially avail-
able IoT devices. Our results demonstrate that Vigilia,
among existing commercial and research systems, is
the best at protecting these applications from various
attacks with only minimal overhead.

II. THREAT MODEL AND GUARANTEES

Vigilia protects IoT devices from attacks resulting from
overprivileged network access. We use the following threat

75

model: 1) the IoT devices have vulnerabilities, 2) attackers
have full knowledge of Vigilia, and 3) attackers have access
to the home network via a compromised laptop or device,
not physical access.

Our threat model is stronger than those assumed in the ex-
isting IoT-defense systems that we are aware of. Commercial
systems [16], [15] typically assume that threats come from
the outside network and the home network is well-guarded.
In the research community, systems such as HomeOS and
HanGuard [13], [10] assume that attacks can come from
the home network, but they focus on PC and smartphone
apps vulnerabilities. IoTSec [62] mainly safeguards against
arbitrary port accesses. Our comparison (§VII-B) between
Vigilia, and commercial and research systems demonstrates
that the threat model we use enables stronger protection of
IoT devices than these systems.

We do not trust application developers—Vigilia ensures
that applications can only perform network, Zigbee, and
file accesses allowed by the user configuration. We do not
assume that application processes are trusted. The attacker
may tamper with the source/binary code of the IoT program
or the language runtime such as the JVM, e.g., exposing
device driver objects to applications that are not supposed
to access those devices. In such cases, the unspecified
communications will be blocked by the WiFi router or the
Zigbee gateway—we trust the integrity of the Vigilia WiFi
router and the Zigbee gateway. We do not trust the wireless
stack of any smart home device. This includes not trusting
devices to use the assigned MAC or IP addresses.

We assume a partial trust of the OSs (i.e., TOMOYO
Linux [65]) running on Raspberry Pi nodes. Defending
against attacks on the OS is out of scope. Note that even
if the OS is compromised, the attacker can only obtain the
permissions of other Vigilia components on the same device
as the router enforces inter-device permissions.

Vigilia provides the following guarantees: (1) all commu-
nications that are not explicitly configured by the user with
a Vigilia component or IoT device are blocked; (2) a Vigilia
component is only allowed to perform actions permitted by
the capabilities it is granted; (3) smart home applications
developed by honest developers will never be blocked by
Vigilia’s checks.

III. EXAMPLE

Figure 1 presents a block diagram of an example smart
irrigation system that connects a set of IoT devices, Rasp-
berry Pis, Zigbee gateways, and Zigbee devices with a
router. An IoT device is a smart home device connected
to the WiFi network such as a sprinkler. Similar to the
SmartThings system, each device has a device driver that
interfaces between the device and smart home applications.
The device driver runs on a Raspberry Pi running Raspbian.
Similar to SmartThings, we expect that device drivers will be
written either by the device manufacturer, Vigilia developers,

Raspbian

Vigilia Application

Router

Sprinkler
(IoT Device)

MoistureSensor1
(DeviceDriver)

Raspbian

Sprinkler1
(DeviceDriver)

MoistureSensor2
(DeviceDriver)

Irrigation
Controller

ZigBee
Gateway

MoistureSensor1
(ZigbeeDevice)

MoistureSensor2
(ZigbeeDevice)

Raspberry Pi

Raspberry Pi

JVM/Binary

JVM/Binary

LEDE/
OpenWrt

JVM/Binary

JVM/Binary

Figure 1. A closer examination of an irrigation system.

or third-party hobbyists. For standard classes of devices, we
expect that the Vigilia developers would define standard-
ized APIs to support compatibility much like SmartThings
ecosystem. For each smart home application, there is an
application that interacts with the drivers of the involved
devices to achieve certain smart home functionalities. In our
example, the application talks to a set of moisture sensors
(discussed shortly) to measure soil moisture, which will be
used to adjust the irrigation schedule for the sprinkler. The
application thus needs to communicate with the drivers of
the sprinkler and the moisture sensors.

One significant difference between Vigilia and Smart-
Things is that Vigilia runs applications on local compute
nodes. This has significant advantages in that Vigilia appli-
cations can operate even if Internet connectivity is lost. The
application also runs on a Raspberry Pi, which may or may
not be the same one that hosts the drivers. A smart home
system often has multiple applications and thus multiple
applications may exist simultaneously. The drivers and the
application may be developed by different developers and/or
in different languages. For example, if they are written in
Java, they are executed by JVMs; if they are C++ programs,
their binary code is directly executed. In this paper, we refer
to device drivers or applications as components.

Zigbee is a standard communication protocol that con-
nects devices with small, low-power radios. A smart home
system may also contain Zigbee devices that connect to
the home WiFi through a Zigbee gateway. In this case, the
Zigbee gateway has an IP address from the LAN while the
Zigbee devices do not support TCP/IP and only have Zigbee
addresses. Hence, device drivers must communicate with
Zigbee devices via requests made to the Zigbee gateway.

IV. ARCHITECTURE AND PROGRAMMING MODEL

Figure 2 depicts Vigilia’s architecture. Vigilia implements
key components of the SmartThings programming model
and system architecture to ensure that our techniques are
applicable to real smart home systems. We cannot directly

76

Compiler &
Type Checker

Installer
Device

Database

Program Code

Bytecode / Binary

Routing
Policies

Camera Sprinkler
Compute

Node

Runtime System

… …

Router

Figure 2. Vigilia system architecture.

use SmartThings as key components are cloud-based and
unavailable and thus not amenable to modification.

Applications are compiled using the Vigilia tool chain.
The tool chain checks that applications will never violate
the declared permissions at runtime. Applications are then
deployed using the Vigilia installer. The deployment process
involves the end user specifying how the application should
be configured for the given house. For example, this process
might specify which switches and light bulbs an application
has access to, and which switches should control which light
bulbs. The Vigilia installer then computes a set of permis-
sions that is required for the given installation. Finally, the
Vigilia runtime enforces these permissions.

To enable applications to fully realizing the potential
benefits of smart home systems, systems like SmartThings
implement and expose rich APIs—potentially increasing
their attack surface. Complex interactions among different
devices requires a programming framework that makes it
easy for components to interact when desired while at
the same time blocking undesired interactions. Like Smart-
Things, Vigilia users implicitly grant permissions to a smart
home application when they configure the application to
implement the desired functionality. The permissions re-
quired are partly determined by the application’s intended
function—thus, some information about the nature of the
permissions required by smart home applications must be
specified by the developer. However, the developer does not
know the specifics of a given deployment. For example, the
developer would typically not know how many light bulbs
or cameras an end user has installed (or what rooms these
devices are installed in). Instead, developers only have a
high-level view of which type of device the application needs
and the required relationships between devices (e.g., that
they are in the same room).

Like SmartThings, Vigilia employs an object-oriented
component model. Each device driver or smart home appli-
cation has a corresponding class. Vigilia classes can declare
sets and relations. These sets and relations are declared as
data fields in these classes. Sets represent abstract communi-
cation permissions. In the SmartThings programming model,
the same information is specified using the preferences

1 public class IrrigationController extends
2 Application implements Irrigation {
3 @config Set <Sprinkler > sprinklers;
4 @config Set <MoistureSensor >
5 moisturesensors;
6 @config Relation <MoistureSensor ,
7 Sprinkler > sensortosprinklers;
8 @config Set <Gateway > phone;
9 @config Set <Address > weatherforecast;

10 // Interface method containing initialization ←�
logic

11 public void init() {
12 ...
13 }
14 // Other computation methods
15 private void turnOn () {
16 ...
17 }
18 }

Figure 3. Example application code in Java.

keyword. Vigilia extends the SmartThings programming
model by using RMI to both isolate components and to sup-
port distributed applications. Communication with devices or
other smart home applications are implemented using remote
method invocation or RMI. As IoT systems may contain
components written in different languages, Vigilia provides
cross-language support for RMI. Vigilia contains a RMI
compiler that parses policy files defining the capabilities of a
component to generate code that implements the RMI stubs
and skeletons.

Irrigation Application Code: To better explain the
programming model, we show a code example for a smart
irrigation application. Figure 3 presents Java code for the ex-
ample. In this example, the application communicates with a
set of sprinklers to water the lawn and a set of moisture sen-
sors to monitor soil moisture. The IrrigationController
class implements the smart irrigation application. The irri-
gation application uses information from several moisture
sensors to adjust watering schedules and thus must com-
municate with the moisture sensors. Each application class
extends the Vigilia Application class and implements the
init method. This method will be invoked by the Vigilia
runtime during application startup.

Abstract Permissions: In general, developers only know
which types of devices an application needs to communicate
with; the exact device instances in each class are specified
during the site-specific installation process. Vigilia provides
the developer with an abstract permission model to specify
the permissions required by a given application. These
abstract permissions are specified in terms of members
of sets (similar to SmartThings preferences). The Vigilia
installer (like the SmartThings installer) then instantiates
these permissions by specifying the exact members of sets.

For example in Line 4 of Figure 3, a developer
specifies an abstract permission that allows
communication between the application and the
generic type of moisture sensor by declaring

77

@config Set<MoistureSensor> moisturesensors

in the IrrigationController application class. This
declares that the application has the abstract permission that
allows it to talk to moisture sensors at runtime. The Vigilia
programming model uses annotations either in the code
(Java) or in a separate file (C++) to allow the developer to
express this information.

In the above example, the developer does not need to
worry about how to create the set object and the contained
MoistureSensor objects in the program as these objects
are created by the runtime system. For example, if the end
user configures two moisture sensors for the application,
then the Vigilia runtime would create two MoistureSensor

objects and insert both objects into the moisturesensors

set. When the program is executed, the Vigilia runtime
system initializes this set with references to the appropriate
sensor objects. Vigilia components such as applications and
device drivers run in separate processes (i.e., JVM/binary).
Since communication between components is implemented
via RMI, a reference from the moisturesensors set can be
used to directly communicate with the sensor. Components
in Vigilia can only communicate with other components that
are specified by this set-based model.

Application Installation: During the installation pro-
cess, the end user configures the application for their home.
This configuration process is not unique to Vigilia, most
smart home systems include a similar process in which the
end user must specify which devices should be controlled
and how they should be. Moreover, the Vigilia installation
process for an application is similar to SmartThings. The
Vigilia installer asks the end user to configure the concrete
device instances to be used by an application. For example, a
sprinkler controller may ask which moisture sensors should
be used to monitor soil moisture. The end user specifies
which specific moisture sensors the application should use
by defining the devices that comprise the set of moisture sen-
sors. Finally, the Vigilia installer uses abstract permissions
and user configuration to generate concrete permissions.
Abstract permissions are generic for the application, while
concrete permissions are specific to installations and grant
access to physical devices.

Vigilia extends the set-based model with relations, speci-
fying relations between devices and communicating config-
uration information. For our irrigation example, the appli-
cation must know which sprinklers are located near which
moisture sensors. During installation, the user provides this
information in relations as it is specific to their installation.
Line 6 of Figure 3 declares the sensortosprinklers

relation that maps moisture sensors to the nearby sprinklers.
Similar to sets, relation objects are also constructed by the
runtime system.

Communication: Line 8 of Figure 3 declares a set
of gateways for smartphones. Devices like tablets/smart-
phones/laptops can be used to provide a user interface,

1 class SpruceSensor : public Device ,
2 public MoistureSensor {
3 private:
4 Set <ZigbeeAddress*> sprucesensor;
5 Set <DeviceAddress*> zigbeegateway;
6 double moisture;
7 double temp;
8 public:
9 void init();

10 double getMoisture ();
11 double getTemperature ();
12 }

Figure 4. Example device driver header in C++.

through which users can input application parameters. Fi-
nally, Line 9 declares a set of addresses of cloud-based
servers that provide weather forecast information. Vigilia
uses an oblivious cloud-based key-value store to provide
secure storage and communication even in the presence of
malicious cloud servers.

Device Drivers: Figure 4 presents a device driver class
declaration in C++ for the moisture sensor used by our
irrigation example. Our irrigation example uses a Spruce
moisture sensor [63], which is a Zigbee-based wireless
sensor. To communicate with the sensor, the device driver
must send packets to the sensor via a Zigbee gateway. Thus
the driver needs two addresses: (1) the IP address for the
Zigbee gateway and (2) the Zigbee network address for the
Spruce sensor.

Device drivers use the same set-based mechanism to ob-
tain direct access to network-based devices. The installation
process stores the system configuration parameterized by the
devices’ MAC addresses, and the Vigilia runtime maps the
MAC addresses to the corresponding IP addresses. Network
access is only permitted via runtime provided IP address/port
pairs, and thus the Vigilia runtime knows which devices a
driver may communicate with. The Vigilia runtime uses this
information to configure the routing policies. Device drivers
may declare a set of public methods such as getMoisture

for the application to get/set information from/to the device.

V. VIGILIA SECURITY MECHANISMS

We next discuss the security mechanisms Vigilia imple-
ments for the SmartThings’ programming model.

Checking: One challenge is how to statically eliminate
permission bugs, in which an application accidentally ex-
ceeds its declared permissions and thus fails at runtime when
the Vigilia runtime enforcement framework blocks the illegal
access. The Vigilia static checking framework is designed to
help honest developers ensure that their applications never
fail at runtime because of Vigilia’s runtime enforcement
framework. It is important to note that Vigilia does not rely
on the static checks for security—applications that attempt to
violate their permissions will be blocked by runtime checks.
The static checker needs to notify the developer of any
network accesses that are doomed to be blocked by runtime

78

checks. For example, an application could potentially violate
its permissions if it were to obtain a reference to a device
object from some other component and then attempt to
use that reference to access the underlying device. Such
an access would fail at runtime and potentially cause the
application to crash.

Vigilia supports both Java and C++. One goal of Vigilia
is to make it easy to support new languages and thus we
minimize the dependence on specialized compiler passes
for static checking. To the degree possible Vigilia uses
the existing language type system to check for permission
violations. Vigilia implements these checks via the Vigilia
RMI compiler. The Vigilia RMI compiler uses the declared
types to ensure that the existing language type system will
catch any accidental sharing of references to device objects
by an application.

SmartThings applications have full Internet access. A
malicious app can easily leak private information. Internet
access may also provide a conduit to attack benign applica-
tions. On the other hand, some functionality requires Internet
access to implement. Thus, Vigilia supports managed access
to TCP/IP sockets. This ensures that Vigilia is aware of any
potential TCP/IP accesses. If a program were to attempt
other accesses, they would be blocked by the Vigilia en-
forcement framework. The Java implementation of Vigilia’s
checker uses a type checker to ensure that Java Vigilia
applications do not attempt to directly use raw TCP/IP
sockets for communication. The C++ implementation does
not implement this particular check—note that this does
not impact security, but developers could potentially attempt
direct network accesses that would be blocked at runtime.

Vigilia Installer: The Vigilia installer manages the
installation of new devices and smart home applications. A
major issue with the SmartThings system is that it trusts
that devices on the home network are not malicious. Under
SmartThings, a single malicious device on the home network
has full network access to all other devices. Vigilia fully
isolates each IoT device from every other device on the
network, permitting communication only when applications
are explicitly configured to use a device during the installa-
tion process. When a new device is installed, Vigilia must
update its database to include a record of the device’s MAC
address and type. To prevent MAC address spoofing or
sniffing attacks from circumventing Vigilia’s access control,
Vigilia assigns a unique pre-shared key (PSK) to each
device. The Vigilia router ties each unique PSK to a specific
device MAC address. Note that while some Android and
iOS devices implement MAC randomization, it is used only
when probing for wireless networks. Thus, our approach is
compatible with modern smart phones. Finally, the installer
maps the device to a specific driver.

The Vigilia installer also manages the addition of new
smart home applications. Installing a new smart home ap-
plication requires specifying the device instances that the

smart home application can control. For each type of abstract
permission the smart home application has requested, the
Vigilia installer presents the list of devices that could provide
those capabilities. The user then selects the subset of devices
she wishes the application to use. For relations, the user
specifies the pairs that comprise the relation (e.g., that a
moisture sensor is close to a given sprinkler head).

Enforcement: Vigilia implements its security model by
combining a range of known techniques. It begins with a
modified wireless router based on LEDE—now merged with
OpenWrt [53]. Many commercially available routers are
built using a similar core code base, so it should be relatively
straightforward to modify existing routers to implement the
necessary functionality. The Vigilia router allows wireless
devices on the same wireless network to have different PSKs.
This allows the router to prevent both MAC spoofing and
sniffing attacks. The effect is that Vigilia can trust the MAC
address of a device and that the wireless communications
between the router and other devices are secure. Vigilia then
uses firewall rules to prevent IP spoofing so that it can trust
IP addresses.

Compute nodes can run more than one computation and
these computations may have different permissions. Vigilia
assigns different ports to different computations on the same
node so that other devices can identify a communication’s
source. Vigilia sandboxes client code using TOMOYO Linux
to ensure that client processes cannot fake port numbers.
TOMOYO Linux also ensures that processes do not access
the files of other processes.

Vigilia implements concrete permission checks by trans-
lating each access permission into a corresponding firewall
rule. Vigilia’s default policy is to block communications—
e.g., unused smart home devices are not allowed to commu-
nicate with anything.

So far we have only discussed restricting network ac-
cesses. However, devices may have many features (e.g., read
temperature and set temperature), and it is important to
restrict accesses to only the necessary features. To support
restrictive feature access, Vigilia employs a capability-based
RMI—device features are often exposed as API methods in
the device’s driver class and thus accessing device features is
often done through remote invocations on the corresponding
methods. A capability in Vigilia is a device feature that
consists of a set of methods from its corresponding class.
A component can declare multiple capabilities and the
capabilities can contain overlapping methods.

Components declare the capabilities they require from
other components. The RMI compiler uses these policy files
to generate stubs and skeletons that only provide access
to the declared capabilities. Although Vigilia’s security
guarantees for capabilities are enforced dynamically, this
code generation strategy enables the existing C++ or Java
compiler to statically check that a component does not

79

Camera

setImage()

setShutter()

getSpeed()

Method
arguments

Return
value

M
et

h
o

d

ar
gu

m
en

ts R
etu

rn

valu
e

Capabilities Method

ImageCapture setImage()
setShutter()

ShutterSpeed getSpeed()
setShutter()

ShutterSpeed

Stub
getSpeed()

setShutter()

UniversalStub
setImage()

setShutter()

getSpeed()

ImageCapture

Stub
setImage()

setShutter()

Skeleton
Method

arguments
Return
value

Figure 5. Capability-based RMI example.

ZigBee
Gateway

RouterCompute Node

(a) Sets in Vigilia Code

(b) Database Table

(c) Firewall Rules
public class SpruceSensor ...{
// a driver class
Set<ZigBeeAddress> sprucesensor;
Set<DeviceAddress> zigbeegateway;
...

ZigbeeAddress

SpruceSensor

SpruceSensor (driver) <--> ZigbeeGateway
c0:4a:00:10:9c:b3 (MAC) | 5005 (Port) | UDP

ZigbeeGateway <--> SpruceSensor (device)
000d6f0003ebf2ee (Zigbee address)

Spruce
Sensor

DeviceAddress

ZigbeeGateway

ZigbeeGateway

c0:4a:00:10:9c:b3 5005 udp

SpruceSensor

000d6f0003ebf2ee

SpruceSensor
Device

000d6f0003ebf2ee
c0:4a:00:10:9c:b3

IP packet

Some
Device

Figure 6. Vigilia program (i.e., irrigation system) (a), device database (b),
and instantiated firewall rules (c).

exceed its declared capabilities. This ensures that a well-
behaved component will never fail a runtime security check.

Figure 5 shows an interaction between a Camera object
and the stubs generated from the original Camera inter-
face. The Camera interface has two capabilities, namely
ImageCapture and ShutterSpeed. Each of these capabil-
ities has two methods and three stubs (ShutterSpeedStub,
ImageCaptureStub, and UniversalStub) are generated
based on each combination of the capabilities. The skeleton
supports all the methods. Vigilia’s capability-based model is
complementary to firewall rules.

This means the problem of restricting feature accesses can
be reduced to restricting remote method invocations. Vigilia
enforces capabilities by using request filters in its RMI
request server—these filters are automatically configured by
Vigilia, and use the source port and IP address to determine
whether a given request is allowed.

Figure 6 shows the relationship between the programming
model, Vigilia’s configuration database, and the firewall
rules. The developer specifies that the Spruce sensor driver
communicates with the Spruce sensor. Since the driver runs
on a Raspberry Pi while the Spruce sensor is a Zigbee
device that needs to communicate via a Zigbee gateway,
the developer adds a second set that enables the driver to

obtain a reference to appropriate the Zigbee gateway. These
two abstract permissions have two separate effects. They
mean that the code can only communicate with the Zigbee
gateway specified by the DeviceAddress object and can
only communicate with the ZigbeeAddress for the Spruce
sensor. These abstract permissions will be concretized into
concrete permissions at installation, which, together with the
network configuration in the device database (Figure 6(b)),
will be used by Vigilia to generate the firewall rules for the
router (Figure 6(c)). As a result, the router will block any
communication inconsistent with these permissions.

VI. VIGILIA RUNTIME SYSTEM

The Vigilia runtime system is a distributed system with a
master and several slaves.

Startup: The master manages the application startup
process. The master generates a deployment plan for an
application, configures the appropriate firewall rules for
both the router and every compute node, and then sends
requests to slave processes to startup the components. Each
component is started inside of a sandbox that constrains the
component to the specified ports.

Wireless Network Filtering: In the default configura-
tion, a standard firewall will not filter traffic between devices
on the same wireless network as the traffic never passes
through the firewall. Access points typically offer two modes
of operation: the standard mode, which forwards all traffic
between clients, and the client isolation mode, which blocks
all traffic between clients. However, the Linux kernel firewall
can be configured to filter these packets. This is implemented
by: (1) enabling access point isolation, (2) turning on bridge
hairpin mode (also called ‘reflective relay’) for the wireless
LAN interface to force the traffic through the kernel firewall,
and (3) then using iptables to filter the traffic.

Vigilia modifies the WiFi stack to secure it against
network-level attacks such as snooping, ARP-spoofing, and
MAC-spoofing that would otherwise subvert Vigilia. Most
IoT devices only support the pre-shared key (PSK) mode
of WPA/WPA2 and do not support WPA/WPA2 Enterprise
mode. This introduces a potential attack—even though each
device eventually negotiates its own key, in the pre-shared
key mode all devices on the same network know the same
initial shared key. Any device that knows the pre-shared key
and monitors the key negotiation can extract the private key.

Surprisingly, it turns out that it is possible to assign a
unique PSK to each MAC address without breaking the
WPA/WPA2 protocol. This prevents devices from com-
puting the private keys of other devices, ensuring that
malicious devices cannot masquerade as the router. This
approach also effectively locks a physical device to a specific
MAC address—malicious devices cannot spoof the MAC
addresses of other devices as they do not know the MAC-
specific PSK. The Vigilia router also enforces that MAC

80

addresses are locked to the specific assigned IP address—
any spoofed traffic is dropped.

Vigilia uses an Android app to configure new devices on
the network. The app generates a new PSK and sends the
PSK to the router using ssh. The router then changes the
default password for the network to this PSK to allow the
new device to join the network. It then detects the MAC
address of the new device, adds the MAC address-PSK pair
to its database, and reverts to the default PSK.

The shared group key, which is used for broadcasting mes-
sages, can also be misused by attackers. Vigilia addresses
this issue by assigning a unique randomized group key to
each device (the router then unicasts group packets) and
combining this with proxy ARP [55]. Note that while these
options are present in the hostapd code, they do not work
and required us to fix them.

Application Sandboxing: Vigilia can run multiple ap-
plications on the same host. This brings the possibility that a
malicious application can masquerade as another application
on the same host by stealing the other application’s port.
Alternatively, a malicious application might try to access
or modify files that are owned by another application. To
prevent these attacks, Vigilia sandboxes applications using
TOMOYO Linux [65]—components are restricted to their
own ports and files.

Zigbee Support: An issue with SmartThings is that any
driver that obtains the Zigbee address of any Zigbee device
can send commands to it [20]. The problem is that device
drivers explicitly build low-level Zigbee packets. These
packets include the destination address for the commands
and the address where responses should be sent. Thus,
SmartThings trusts that device drivers are not malicious.
Malicious device drivers can easily communicate with any
Zigbee device whose address they have.

Vigilia guarantees that device drivers cannot interact with
the wrong Zigbee devices. Vigilia’s Zigbee support consists
of four components: (1) language support for communicating
Zigbee addresses to device drivers, (2) language support to
ensure that honest device drivers do not manually produce
Zigbee address objects, (3) a Zigbee abstraction that sepa-
rates the specification of addresses from device commands,
and (4) a Zigbee firewall that verifies that the given device
driver has permission to communicate with the specific
Zigbee device.

At the language level, Vigilia uses the same basic set-
based abstraction that it uses for both RMI and IP addresses
to check for permission bugs in Zigbee accesses. It then
enforces these properties using runtime permission checks
in the Zigbee gateway. The Zigbee gateway checks are
configured automatically by the Vigilia master to implement
the permissions granted by the end user. These checks use
the source port and IP address to verify that a given Zigbee
device driver has been granted permission to communicate
with the specific Zigbee device address.

Table I
LINES OF CODE IN VIGILIA APPLICATIONS.

Application Application Driver Library Android
LOC LOC LOC LOC

Irrigation 4,075 2,975 401,843 208
Lights 1,683 3,456 401,843 N/A
Music 1,237 2,434 25,254 641
Home Security 2,299 4,177 401,843 187

Some Zigbee requests can leak information about other
devices or configure a Zigbee device to interact with other
devices. Thus the Zigbee gateway limits the types of mes-
sages a device driver can send to prevent the device driver
from directly performing commands such as device discov-
ery. The Zigbee gateway also filters incoming messages to
ensure that device drivers only receive messages about the
relevant device.

Incoming messages are often reports that are generated
by a network node. For a node to receive information
from another network node it must tell that node to send
reports using a ZDO bind command. The Zigbee gateway
remembers which driver performed a ZDO bind command,
and to which node and cluster. When a report arrives from
a Zigbee node, the gateway consults a table to determine
which driver should receive it.

VII. EVALUATION

We deployed Vigilia on a test bed that consists of the
following devices: 2 Raspberry Pi 2 compute nodes, a
Google Nexus 5X smartphone, a Netgear Nighthawk R7800
wireless router, 2 LIFX Color 1000 bulbs, 4 Amcrest IP2M-
841 ProHD 1080P cameras, a XBee S2C Zigbee module
attached to a Raspberry Pi 1 (Zigbee gateway), a Spruce
soil moisture Zigbee sensor, a Blossom sprinkler controller,
2 iHome iWS2 AirPlay speakers, a D-Link DCH-S220 siren,
3 Samsung SmartThings Zigbee sensors (motion, water-leak,
and multi-purpose), and a Kwikset SmartCode 910 Zigbee
lock. We have made the implementation of Vigilia publicly
available at http://plrg.eecs.uci.edu/vigilia/.

Table I presents the lines of code for our applications.
Our test bed is built in a smart home lab environment.

Figure 7 shows the hardware setup in the lab.

A. Applications

We implemented four applications on our test bed. Table II
presents the summary of these applications.

Irrigation: The irrigation application optimizes water-
ing to conserve water. It uses the Spruce moisture sensor to
measure soil moisture. The system makes use of weather
forecasts to determine the expected precipitation. When
people walk on a lawn, they stress the lawn and thus it
requires more water [2], [29]. It uses cameras to monitor
lawn usage and thus whether it requires extra water. The
Spruce moisture sensor uses Zigbee to communicate; we

81

Table II
SUMMARY OF VIGILIA APPLICATIONS.

Application Smart Home Devices Security Properties
Irrigation 1 Spruce soil moisture sensor

1 Blossom sprinkler controller
1 Amcrest camera
1 Google smartphone

This benchmark uses the device drivers for camera, Spruce moisture sensor, and
sprinkler controller. It also includes a Zigbee gateway that relays messages to the Spruce
sensor. Vigilia generates firewall rules that only allow the following communication:
(1) the application can communicate with the drivers, phone, and the weather forecast
website and (2) each device driver can communicate with its respective device. Each
communication channel is isolated from the others and from all outside devices by (1)
the compute node firewall and (2) the router firewall. The runtime system sends filtering
rules also to the Zigbee gateway, ensuring that the Spruce driver can only communicate
with the Spruce sensor.

Lights 2 LIFX light bulbs
2 Amcrest cameras

This benchmark uses the device drivers for camera and light bulb. Vigilia generates
firewall rules that only allow the following communication: (1) the application can
communicate with the device drivers and (2) each device driver can communicate with
its respective device (i.e., light bulb or camera). Each communication channel is isolated
in a way similar to Irrigation.

Music 2 iHome speakers
1 Google smartphone

This benchmark uses a phone app and two speaker drivers. Vigilia generates firewall
rules that only allow the following communication: (1) the main music application can
communicate with the speaker drivers and the phone app, and (2) each of the device
drivers can communicate with its respective speaker. Each communication channel is
isolated in a similar manner.

Home Security 3 Samsung SmartThings sensors
1 Kwikset door lock
1 Amcrest camera
1 D-Link siren
1 Google smartphone

This benchmark uses the device drivers for camera, siren, door lock, and SmartThings
sensors. Vigilia generates firewall rules that only allow the following communication:
(1) the main home security application can communicate with it device drivers and the
cloud, and (2) each device driver can communicate with its respective device. Each
communication channel is isolated in a similar manner.

Table III
ATTACKS PERFORMED ON DEVICES.

No. Attack Application Detail
1. Sprinkler attack Irrigation A rogue program that controls the sprinkler (i.e., turn on valves, reconfigure wireless connectivity,

and update the firmware based on a non-documented, non-secured RESTful API to port 80 [6]).
2. Light bulb attack Lights A rogue program that issues commands to turn the light on and off (port 56700).
3. Speaker attack Music A rogue program that sends and plays music file on the speaker (port 80).
4. Camera attack Home Security A HTTP URL is used to view the main/sub stream via a web browser (port 80).
5. Siren attack Home Security A rogue program that launches a brute-force attack to guess the PIN code of the siren; an attacker

can use this PIN code to perform a valid authentication (port 80).
6. Deauth. attacks All A jammer is used to deauthenticate a specific device (i.e., sprinkler, light bulb, speaker, camera, or

siren) from its original access point (AP) to let it join a malicious AP with the same SSID and
PSK as the ones used for the actual AP. Thereafter, the device is attacked using the attack for the
specific device (i.e., attack 1, 2, 3, 4, or 5).

Figure 7. Vigilia hardware setup.

have implemented a driver for this sensor that uses the sensor
to monitor soil moisture. An Amcrest camera monitors the

usage of the lawn to adjust the soil moisture target. An
Android app provides the user interface. Finally, a Blossom
sprinkler controller actuates the sprinklers.

Lights: The light application attempts to save energy
by turning lights off in unoccupied spaces, and to improve
sleep by adjusting brightness and color temperature to match
the sun’s color [32], [28], [9]. The application uses cameras
combined with image processing to detect people. We use
two Amcrest cameras to monitor rooms and control the two
LIFX light bulbs.

Music: The music application tracks people using
WiFi-based indoor localization of their cell phone and plays
music from the closest speakers. An Android phone is
used to implement localization and play music through two
iHome speakers.

Home Security: The home security application is mod-
eled after commercial home security products. Such applica-
tions usually consist of multiple sensors that can detect in-

82

Table IV
VIGILIA COMPARISON WITH OTHER SYSTEMS.

Attack Normal IoTSec Vigilia
Sprinkler cont. attack � � ×
Light bulb attack � � ×
Speaker attack � × ×
Camera attack � � ×
Siren attack � × ×
Deauthentication + sprinkler cont. attack N/A N/A ×
Deauthentication + light bulb attack N/A N/A ×
Deauthentication + speaker attack N/A � ×
Deauthentication + camera attack N/A N/A ×
Deauthentication + siren attack N/A � ×

�= successful attack × = thwarted attack

trusions/anomalies and sound an alarm. Our test bed uses an
Amcrest camera, three Samsung SmartThings sensors (i.e.,
motion, water-leak, and multi-purpose sensors), a Kwikset
door lock, and a D-Link siren as the alarm. Sensor and door
lock drivers communicate with the three sensors and the
door lock through the Zigbee gateway. Finally, an Android
app implements a UI through the secure cloud (§IV).

B. Comparisons

We next compare Vigilia with existing commercial (Nor-
ton Core [16] and Bitdefender BOX 2 [15]) and research
systems (HanGuard [10] and IoTSec [62]).

Attacks: We designed a set of direct attacks, under our
threat model (Section II), against our smart home devices.
The sprinkler, speaker, camera, and siren communicate
through port 80 using the HTTP protocol. The speaker also
uses other ports as it communicates using the AirPlay proto-
col [34]. The sprinkler particularly has a known vulnerability
that can be exploited through a non-documented and non-
secured RESTful API [6].

The light bulb communicates through port 56700, through
which all LIFX bulbs listen [39]. The deauthentication attack
is a more sophisticated attack that we use in combination
with the first five attacks that directly target the devices. This
attack deauthenticates a device, and makes it leave its router
to join a malicious router that has the same SSID and PSK.
When the device joins the other router, we can forcefully
launch a direct attack to the device. Table III summarizes
all of them.

For every system that we evaluated, we connected the
smart home devices to the system and we performed the
direct attacks. When a direct attack failed, we performed
a combination attack. We first deauthenticated the device,
let it join the malicious router that we have prepared, and
performed the direct attack. Table IV summarizes the results.
We also performed the attacks on a normal router to establish
a baseline. The normal router does not have any of the
security properties that the Vigilia router has.

SmartThings: We implemented several previously
known attacks against the SmartThings hub. In our first
attack, we modified a device handler to subscribe to all

LAN traffic. When we installed this device handler, there
was no notification that it might access all SSDP network
communications. We then ran the handler and could observe
all SSDP traffic to the hub

We next modified the service manager component of the
Wemo Switch driver to change the IP address and port of a
device after installation. This allowed us to control arbitrary
devices on the LAN. Since third party drivers are commonly
used to control smart home devices under SmartThings (e.g.,
the only driver for Google Nest is a third party driver written
by a hobbyist), this is a significant threat. This hack can be
used to communicate with any device on the LAN.

We then implemented the same type of attack on Zig-
bee drivers and have discovered that Zigbee drivers can
contact arbitrary Zigbee devices and send arbitrary Zigbee
commands [20].

None of these attacks are possible under Vigilia. Vigilia
blocks all network traffic by default and thus components
can only access network traffic that they have been explicitly
configured to access and that was explicitly intended for the
component. Drivers under Vigilia are subject to the fine-
grained access controls for both the TCP/IP and Zigbee
networks and thus can only access the devices they were
explicitly configured for. Moreover, our Zigbee framework
prevents issuing commands that would cause a Zigbee device
to interfere with other Zigbee devices.

Finally, as part of our general attacks reported later in this
section, we sent commands directly to smart home devices.
SmartThings does not block any such attacks. Vigilia blocks
all such attacks.

Commercial Systems: We selected Norton Core and
Bitdefender BOX 2, which are two leading secure routers
that protect smart home IoT devices [16], [50], [15], [51].
They both use machine learning to learn the normal behavior
of smart home devices. Their system compares device be-
havior against their database that contains information about
vulnerabilities, attacks, viruses, malicious activities, etc., and
warns users when it detects anomalies.

We first connected our devices to Norton Core and Bit-
defender BOX 2. Next, we performed direct attacks against
the smart home devices. The attacks were successful and
thus we categorize these systems under the normal router
category in our results.

Further inspection revealed that these systems operate
under a different threat model—they only defend against
attacks that come from outside. A device inside the local
network is considered safe and trusted—it is allowed to
generate any traffic to any of the other local devices. Hence,
they do not defend against our attacks that come from
compromised local devices.

Research Systems: For research systems, we evaluated
HanGuard [10] and IoTSec [62]. To the best of our knowl-
edge, these systems are the closest to Vigilia in terms of the
threat model.

83

HanGuard uses SDN-like techniques to learn the nor-
mal traffic between smartphone apps and their respective
smart home devices. A Monitor app runs on the phone
to identify any attacks and inform the router through the
system’s control plane. The router then enforces policies
in the data plane after verifying the party that attempts to
access the device. Unfortunately, we could not obtain the
implementation of HanGuard. Thus, we could not compare
HanGuard with Vigilia. However, the paper [10] implies
that HanGuard would leave IoT devices vulnerable to the
combination attacks that can be thwarted by Vigilia.

IoTSec has two phases: profiling and deployment. During
profiling, it attempts to learn the normal traffic of devices,
e.g., legitimate source and destination IP addresses, port
numbers, protocols, etc. Then, a set of firewall rules will
be generated and can be deployed on the router. Similarly
to Vigilia, IoTSec reduces the attack surface with firewall
while trying to maintain full functionality of devices.

To evaluate IoTSec, we connected our devices to a router
running the IoTSec profiler. We then executed the four Vig-
ilia applications, but turned off Vigilia’s firewall protection.
The IoTSec profiler learned the normal traffic of the four
applications and generated a set of firewall rules for all
devices. We deployed the firewall rules on the router and
restarted the applications.

A key weakness of IoTSec is that it relies entirely on
profiling. For most of our devices, this approach worked
because they always use the same IP address, port numbers,
and protocols. However, the iHome speaker randomly selects
a port number and the generated firewall rules disrupted
the speaker’s operation—these rules assume devices always
use the same port numbers. In addition, profiling may not
exhibit all behaviors of a system. For example, during
profiling, we did not trigger the siren to let it go off—
deliberately triggering the home alarm to enable the home
security system is not a normal behavior. The profiler did
not learn the siren’s traffic and thus the generated firewall
rules disabled the siren.

We performed direct attacks on the devices. The attacks
against the sprinkler, light bulb, and camera were success-
ful because the generated firewall rules allowed them to
communicate through their respective port numbers. During
profiling, IoTSec does not learn the source IP addresses—it
assumes that devices are allowed to communicate through
their respective ports regardless of the source IP addresses.
Hence, the firewall rules are not fine-grained enough to block
communications from illegal sources.

The attacks against the speaker and siren failed because
the incomplete firewall rules meant that they did not function
at all. We then performed the deauthentication attack to
both devices. After they joined our malicious router, we
successfully attacked them.

Vigilia: We performed the same attacks against the
devices under Vigilia. We connected every device using a

Table V
STATISTICS OF ACCESS ATTEMPTS FOR THE PUBLIC IP EXPERIMENT;

‘A’ IS A PLACEHOLDER FOR 128.200.150 AND ‘B’ IS FOR
calplug.uci.edu; COLUMN DS REPORTS THE NUMBER OF DISTINCT
SOURCES; TCP AND UDP REPORTS NUMBERS IN THE FORM OF X/Y

WHERE X AND Y REPRESENT THE NUMBERS OF TOTAL AND DISTINCT
ADDRESSES, RESPECTIVELY.

IP Domain Total DS TCP UDP ICMP
A.130 iot1.B 2,944 1,411 1,992 / 340 334 / 60 218
A.131 iot2.B 2,791 1,451 2,039 / 343 256 / 84 69
A.132 iot3.B 3,255 1,405 1,947 / 350 203 / 62 693
A.133 iot4.B 2,841 1,364 1,934 / 344 219 / 73 271
A.134 iot5.B 2,769 1,422 2,043 / 349 233 / 62 82
A.135 iot6.B 2,792 1,416 2,024 / 353 281 / 65 69
A.136 iot7.B 3,284 1,443 2,106 / 342 276 / 64 496
A.137 iot8.B 3,006 1,507 2,084 / 316 272 / 88 246
A.138 iot9.B 3,000 1,433 2,028 / 316 353 / 72 231
A.139 iot10.B 2,620 1,370 1,862 / 283 244 / 62 169
A.140 iot11.B 2,692 1,419 1,983 / 316 258 / 69 66
A.141 iot12.B 2,709 1,429 2,018 / 267 262 / 69 93
A.142 iot13.B 3,582 1,397 2,042 / 352 287 / 63 838
A.143 iot14.B 2 2 0 / 0 2 / 2 0
A.144 iot15.B 3 2 0 / 0 3 / 2 0
A.145 iot16.B 6 2 0 / 0 6 / 1 0

Total 38,296

Table VI
STATISTICS OF PUBLIC IP EXPERIMENT ON CAMERAS; ‘A’ IS FOR

128.200.150; ATT, SRC, PKT REPRESENT THE NUMBER OF ACCESS
ATTEMPTS, SOURCES, AND NETWORK PACKETS, RESPECTIVELY; U/T

STANDS FOR UDP/TCP.

IP With Vigilia
(Att / Src / Pkt)

Ports
(U/T)

With pwd only
(Att / Src / Pkt)

Ports
(U/T)

A.134 106 / 96 / 114 6 / 23 5,337 / 117 / 9,658 39 / 48
A.135 111 / 100 / 115 7 / 23 20,172 / 124 / 40,998 47 / 46
A.136 206 / 97 / 208 6 / 22 1,201 / 98 / 2,039 19 / 43
A.137 128 / 109 / 135 7 / 21 4,520 / 119 / 8,889 17 / 51

unique PSK to Vigilia’s router. We ran the four applications
simultaneously and attacked them.

Under the protection of Vigilia’s firewall and sandboxing
mechanisms, all of the applications and devices were fully
functional, and all of the attacks were successfully thwarted.
The direct device attacks were blocked by the deployed
firewall rules on the router and the compute nodes. The
deauthentication attack also failed as none of the devices
could join the malicious router. Even though the malicious
router was configured with the same SSID and PSK as the
Vigilia router, the devices did not use the router’s default
PSK—every device was connected to the Vigilia router using
a unique PSK.

C. Public IP

To further evaluate Vigilia, we conducted another ex-
periment, in which we assigned public IP addresses to
our devices. While other secure routers generally claim to
protect smart home IoT devices when they are connected
to a local network behind Network Address Translation
(NAT), we let our devices be exposed to the open Internet.
For this experiment, we assigned a public IP address for

84

every device, ran the four applications, and let Vigilia set
up firewall rules on the router. We ran this experiment for
approximately 10 days.

Table V summarizes the results of the experiment. The
table reports, for a device, the IP address, its domain name,
the total number of access attempts for this device, the
number of distinct sources these attempts came from, the
number of total and distinct TCP attempts, the number of
total and distinct UDP attempts, as well as the number of
ICMP packets. The 16 public IP addresses generated 38,296
access attempts—approximately 3,629 access attempts per
day and 240 access attempts per day per device.

All the attempts were thwarted by the Vigilia firewall rules
set up on the router. No device responded to any of the
sources, except for the ICMP packets. The network trace
suggests that most of the access attempts were either ICMP
ping or TCP SYN/ACK port scanning [70], which are the
two approaches attackers commonly use to “test the waters”.
Since our devices only replied to ICMP pings, there were
no further packets from more sophisticated attacks.

Real Attacks on Cameras: We conducted an additional
experiment with our Amcrest cameras and exposed them
to real attacks. This experiment was done under three
scenarios: 1) cameras were protected under Vigilia, 2) cam-
eras were protected with passwords, and 3) cameras were
unprotected. Each scenario lasted for 14 hours.

Table VI summarizes the results of the experiment for the
first two scenarios. In the first scenario, the first camera with
address 128.200.150.134 received 106 access attempts
from 96 distinct sources with 114 packets of total traffic
under Vigilia’s protection—the attempts targeted 6 distinct
UDP ports and 23 distinct TCP ports, and were all thwarted.
In the second scenario, the same camera received many more
access attempts. Although the camera had not been com-
promised, it could have been had we extended the duration.
This is especially the case when people use generic/default
passwords for their cameras, as shown in a study on the
Mirai botnet attack [3]—there was even a ... Mirai infection
on Amcrest cameras despite strong passwords [24].

In the third scenario, it took just 15 minutes, for all
of the four cameras to be hacked and crippled—the user
interface was completely broken although it was still able
to stream out video. Each attack session for each camera
just took around 172 - 362 packet exchanges between each
camera and the attacker. The network trace in the log file
suggests that the attackers used a technique called XML-
RPC attack [59], which typically brings down web services
by executing remote procedure call (RPC) commands via
the HTTP protocol.

D. Performance Microbenchmarks

Vigilia’s primary enforcement is implemented by firewall
rules. The other components are not on the hot paths and
should add minimal overhead. This subsection evaluated the

Table VII
VIGILIA MICROBENCHMARK RESULTS.

Node-to-Node Over-
head

Node-to-LAN Over-
head

Normal 2.91 MB/s N/A 5.64 MB/s N/A
Hairpin 2.78 MB/s 4.5% 5.62 MB/s 0.3%
Hairpin + Policies 2.75 MB/s 5.5% 5.62 MB/s 0.3%

overhead of Vigilia’s routing policies on network throughput.
We measured the network bandwidth under three differ-
ent router configurations: normal mode, hairpin mode, and
hairpin mode with policies. We performed each of these
measurements under two different setups: (1) a node-to-node
bandwidth measurement using the Apache HTTP server on
a Raspberry Pi 2 and (2) a node-to-LAN bandwidth mea-
surement using the Apache HTTP server on an Intel Core i7-
3770 CPU 3.40GHz machine running Ubuntu. We ran wget

on another Raspberry Pi 2 to retrieve a 30 MB file from both
the Raspberry Pi 2 and the Ubuntu machine. All equipment
was placed in a Faraday cage to limit interference. We report
average bandwidth over 20 runs.

Table VII reports the average bandwidths. Under the node-
to-node scenario, hairpin mode introduces a 4.5% overhead
since it forces traffic to exit the driver and go through the
kernel firewall. Under the node-to-LAN scenario, the lower
overhead is not surprising as node-to-LAN traffic already
exits the driver before going through the firewall. The
firewall policies introduce almost negligible overhead for
both setups. Node-to-node results show lower bandwidths
as communication must take two hops on the same WiFi
channel. Overall, the overheads are relatively small.

VIII. DISCUSSION

Vigilia Techniques: The techniques used in Vigilia, i.e.,
static checking, router policy enforcement, process sandbox-
ing, and capability-based RMI (§V) along with WiFi network
filtering and Zigbee firewall (§VI) could also be deployed
in existing systems, e.g., SmartThings. The major issue with
directly implementing our approach on SmartThings is that
the SmartApps run on their cloud servers and none of the
source code for their software infrastructure for running
SmartApps is available. Nevertheless, assuming that we
had access to their software infrastructure and extended
it to execute applications and device drivers on the local
network, it would be straightforward to deploy the static
checking, router policy enforcement, process sandboxing,
and capability-based RMI. The techniques to secure the
WiFi network against snooping, ARP-spoofing, and MAC-
spoofing could be applied directly to the router, while the
Zigbee firewall could also be integrated fairly easily into the
smart hub.

85

IX. RELATED WORK

Network-based policy checking is not a new idea and it
has been studied in the software-defined networking (SDN)
community [26], [8], [7]. For example, Ethane [7] requires
each application to specify a manifest of its required com-
munication and then checks packets against security rules
and installs forwarding rules as required. While Ethane
is applicable in our setting, it is designed primarily for
enterprise networks that have a large number of switches;
it requires a sophisticated controller that performs authen-
tication, registration, and checking. It also requires expert
administrators to develop routing policies—a task that is be-
yond the abilities of most end users. Moreover, IoT devices
typically communicate via WiFi and often do not support
the enterprise security modes. Thus, malicious devices can
masquerade as other devices to bypass the SDN protections.

IoT Security: Denning et al. [11] identified emergent
threats to smart homes due to the use of IoT devices. Recent
Work [20] discusses scenarios in which hackers can weaken
home security through compromising these devices. A study
by Ur et al. [66] on the access control of the Philips Hue
lighting and the Kwikset door lock found that each system
provides a siloed access control system that fails to enable
essential use cases.

Many other projects have made a similar observation
that IoT devices have highly structured communication pat-
terns. The Bark policy language uses manually created poli-
cies [33]. This policy language provides five types, i.e., who,
what, where, when, and how to capture the high level infor-
mation (e.g., devices, apps, types of service, etc.) needed
to construct network level policies. A similar approach
uses manually created policies [4], while other approaches
propose learning policies [74], [46]. These approaches suffer
from similar challenges to IoTSec, in that they can generate
overly relaxed policies that allow attacks or overly restrictive
policies that break applications. Moreover, compromised
devices can easily bypass the policies by masquerading as
other devices. For simple IoT control rules of the form used
by IFTTT, automated analysis can generate rich policies that
only grant permissions under specific criteria (e.g., one can
only turn on the heat if it is cold) [22].

Bluetooth devices face similar issues to Zigbee devices
regarding access control. Previous work [38] has explored
access control for Bluetooth devices. Low-level protocol
differences mean that the solution for Bluetooth devices does
not solve the problem for Zigbee.

There are two main categories of work in current smart
home security research, focused primarily on devices and
protocols, respectively [23], [30], [52]. On protocols, studies
found various flaws in the Zigbee and Z-Wave devices [25],
[41], [20], [68].

Much work has been done to limit the privilege of
networked systems, but this is difficult to achieve due to
the lack of programming language and system support.

Felt et al. [19] found that more than 300 Android apps
were overprivileged. Fernandes et al. [20] found that IoT
devices are also overprivileged due to the framework design
itself. HomeOS supports smart home devices using a PC-
like abstraction [13]. HomeOS only provides support for
placing restrictions on modules running on the PC—other
devices on the network are free to attack smart home devices.
Vigilia provides much stronger security guarantees—it can
defend against attacks from other smart home applications,
device drivers, and arbitrary devices on the home network.
FlowFence [21] provides security by requiring consumers of
sensitive to declare their data flow patterns. ContexIoT [36]
is a context-based permission system provides contextual
integrity by supporting fine-grained context identification for
sensitive actions.

Capability-based Object Model: Capability-based ob-
ject models are used to control object accesses according to
a certain set of capabilities. This term was coined in 1959 by
Dennis et al. [12]. Miller et al. [47] compared ACL with the
capability-based model. In [44], [43], [57], [45], capability-
based models have been used in different contexts. Unix-like
operating systems, e.g., SELinux [42], have implemented
ACL and MAC, which are orthogonal to capability-based
object model.

Routing Policy Derivation: Researchers have developed
tool kits for managing firewalls. The Firmato [5] toolkit al-
lows administrators to specify rules in terms of a higher-level
model. This model is specified by the administrator and thus
has no direct relationship to code—errors in specifying the
model can either open the system to attacks or block desired
communications. It is likely to be unreasonable to expect end
users to develop such models for their home networks. There
also exists work on information flow systems [48], [49], [64],
[18], [54], [75], [76], [40], most of which is orthogonal.

X. CONCLUSION

We present an approach for building secure systems out
of insecure components in Vigilia. Our approach moves the
burden of securing the system from the device manufacturers
to the platform, reducing concerns about the long-term
availability of security patches.

We have implemented 4 applications in Vigilia using
commercially available IoT devices. The intended deploy-
ment of the IoT devices used by each application had
least one vulnerability. Vigilia successfully defended all our
applications against all attacks.

XI. ACKNOWLEDGMENT

We would like to thank our anonymous reviewers for
their thorough comments and especially our shepherd Klara
Nahrstedt, who has helped us improve the paper’s readabil-
ity. We would like to also thank Changwoo Lee, Jiawei Gu,
Yuting Tan, and Jiman Jeong, who helped develop the Zigbee
device drivers; Hyeongtag Chi, Bowon Ko, Kevin Cong

86

Truong, and Brian Truong, who helped develop the phone
application; Dohyun Kim and Janghoi Koo, who helped with
a benchmark application.

This project was partly supported by the National Sci-
ence Foundation under grants CCF-1319786, CNS-1613023,
CNS-1703598, CNS-1763172, OAC-1740210 and by the
Office of Naval Research under grants N00014-16-1-2913
and N00014-18-1-2037.

REFERENCES

[1] Samsung smart fridge leaves Gmail logins open to at-
tack. http://www.theregister.co.uk/2015/08/24/smart fridge
security fubar/, August 2015.

[2] Lawn watering tips - best times & schedules.
http://www.scotts.com/smg/goART3/Howto/lawn-watering-
tips/33800022/12400007/32000006/18800019, April 2016.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou. Understanding the mirai botnet. In Proceedings
of the 26th USENIX Security Symposium, 2017.

[4] D. Barrera, I. Molloy, and H. Huang. Idiot: Securing the
internet of things like it’s 1994. CoRR, abs/1712.03623, 2017.

[5] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit. ACM Transactions on
Computer Systems, 22(4):381–420, November 2004.

[6] M. Bergin. Unplugging an IoT device from the cloud.
https://blog.korelogic.com/blog/2015/12/11/unplugging iot
from the cloud, December 2015.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise.
SIGCOMM Comput. Commun. Rev., 37(4):1–12, Aug. 2007.

[8] M. Casado, T. Garfinkel, M. Freedman, A. Akella, D. Boneh,
N. McKeowon, and S. Shenker. SANE: A Protection Ar-
chitecture for Enterprise Networks. In Proc. Usenix Security
Symposium, August 2006.

[9] A.-M. Chang, F. A. J. L. Scheer, and C. A. Czeisler. The
human circadian system adapts to prior photic history. The
Journal of Physiology, 589(5):1095–1102, March 2011.

[10] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. Gunter,
X. Zhou, and M. Grace. Guardian of the HAN: Thwarting
mobile attacks on smart-home devices using OS-level situa-
tion awareness. https://arxiv.org/abs/1703.01537, 2017.

[11] T. Denning, T. Kohno, and H. M. Levy. Computer security
and the modern home. Commun. ACM, 56(1):94–103, Jan.
2013.

[12] J. B. Dennis and E. C. Van Horn. Programming semantics for
multiprogrammed computations. Commun. ACM, 9(3):143–
155, Mar. 1966.

[13] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl. An operating system for the home.
In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, 2012.

[14] L. DROLEZ. Wanscam JW0004 IP Webcam hack-
ing. http://www.drolez.com/blog/?category=Hardware&post=
jw0004-webcam, July 2015.

[15] M. Eddy, V. Song, and J. R. Delaney. Bitdefender box
2. https://www.pcmag.com/review/357433/bitdefender-box-2,
November 2017.

[16] M. Eddy, V. Song, and J. R. Delaney. Symantec nor-
ton core router. https://www.pcmag.com/review/355417/
symantec-norton-core-router, September 2017.

[17] H. P. Enterprise. Internet of things research study: 2015
report. http://h20195.www2.hp.com/V2/GetDocument.aspx?
docname=4AA5-4759ENW&cc=us&lc=en, 2015.

[18] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner,
F. Roesner, K. Koscher, P. Barros, R. Bhoraskar, S. Han,
P. Vines, and E. X. Wu. Collaborative verification of infor-
mation flow for a high-assurance app store. In Proceedings of
the 2014 ACM Conference on Computer and Communications
Security, 2014.

[19] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In Proceedings of the 18th
ACM Conference on Computer and Communications Security,
Chicago, IL, USA, October 2011 (CCS ’11).

[20] E. Fernandes, J. Jung, and A. Prakash. Security analysis of
emerging smart home applications. In 2016 IEEE Symposium
on Security and Privacy (SP), Oakland, CA, USA, May 2016
(Oakload ’16), pages 636–654, May 2016.

[21] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato,
M. Conti, and A. Prakash. FlowFence: Practical data protec-
tion for emerging IoT application frameworks. In USENIX
Security, pages 531–548, 2016.

[22] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decen-
tralized Action Integrity for Trigger-Action IoT Platforms. In
22nd Network and Distributed Security Symposium (NDSS
2018), Feb. 2018.

[23] D. Fisher. Pair of bugs open honeywell home controllers
up to easy hacks. https://threatpost.com/pair-of-bugs-open-
honeywell-home-controllers-up-to-easy-hacks/, 2015.

[24] A. Forum. Mirai infection. https://amcrest.com/forum/
technical-discussion-f3/mirai-infection-t3686.html, October
2017.

[25] B. Fouladi and S. Ghanoun. Honey, i’m home!!, hacking
zwave home automation system. In Black Hat USA, 2013.

[26] O. N. Foundation. Software-defined networking (sdn) def-
inition. https://www.opennetworking.org/sdn-resources/sdn-
definition, 2017.

[27] T. A. S. Foundation. The apache groovy programming
language. http://groovy-lang.org/, 2003-2018.

87

[28] J. J. Gooley, K. Chamberlain, K. A. Smith, S. B. S. Khalsa,
S. M. W. Rajaratnam, E. V. Reen, J. M. Zeitzer, C. A. Czeisler,
and S. W. Lockley. Exposure to room light before bedtime
suppresses melatonin onset and shortens melatonin duration
in humans. Journal of Clinical Endocrinology & Metabolism,
96(3):E463–E472, March 2011.

[29] J. Hartin, P. M. Geisel, and C. L. Unruh. Lawn watering
guide for california. Technical Report ANR 8044, Uni-
versity of California – Agriculture and Natural Resources,
http://anrcatalog.ucanr.edu/pdf/8044.pdf, 2001.

[30] A. Hesseldahl. A hackers-eye view of the internet of
things. http://recode.net/2015/04/07/a-hackers-eye-view-of-
the-internet-of-things/, 2015.

[31] K. Hill. The half-baked security of our ’Internet Of
Things’. http://www.forbes.com/sites/kashmirhill/2014/05/27/
article-may-scare-you-away-from-internet-of-things/.

[32] D. C. Holzman. What’s in a color? the unique human health
effects of blue light. Environmental Health Perspectives,
118(1):A22–A27, January 2010.

[33] J. Hong, A. Levy, L. Riliskis, and P. Levis. Don’t talk
unless i say so! securing the internet of things with default-
off networking. In 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation
(IoTDI), pages 117–128, April 2018.

[34] A. Inc. Airplay. https://developer.apple.com/airplay/, 2018.

[35] IOActive. Belkin WeMo home automation vulner-
abilities. http://www.ioactive.com/pdfs/IOActive Belkin-
advisory-lite.pdf, 2014.

[36] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,
Z. M. Mao, and A. Prakash. ContexIoT: Towards providing
contextual integrity to appified IoT platforms. In NDSS, 2017.

[37] Security of the Local LAN? https://community.smartthings.
com/t/security-on-the-local-lan/41585, May 2018.

[38] A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein.
Beetle: Flexible Communication for Bluetooth Low Energy.
In Proceedings of the 14th International Conference on
Mobile Systems, Applications and Services (MobiSys), June
2016.

[39] LIFX. Device messages. https://lan.developer.lifx.com/docs/
device-messages, 2018.

[40] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.
Myers. Fabric: A platform for secure distributed computation
and storage. In Proceedings of the ACM 2009 Symposium on
Operating Systems Principles and Implementation, 2009.

[41] N. Lomas. Critical flaw identified in zigbee smart home
devices. http://techcrunch.com/2015/08/07/critical-flaw-ided-
in-zigbee-smart-home-devices/, 2015.

[42] P. Loscocco and S. Smalley. Integrating flexible support
for security policies into the Linux operating system. In
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, 2001.

[43] T. Luo and W. Du. Contego: Capability-Based Access
Control for Web Browsers, pages 231–238. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[44] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities
and isolation of untrusted web applications. In 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA, pages 125–140,
2010.

[45] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-
oriented subset of Java. In Network and Distributed Systems
Symposium. Internet Society, 2010.

[46] M. Miettinen, S. Marchal, I. Hafeez, T. Frassetto, N. Asokan,
A. R. Sadeghi, and S. Tarkoma. IoT Sentinel: Automated
device-type identification for security enforcement in IoT.
In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), June 2017.

[47] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability myths
demolished, 2003.

[48] A. C. Myers. JFlow: Practical mostly-static information
flow control. In Proceedings of the 26th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1999.

[49] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In Proceedfings of the 16th ACM
Symposium on Operating Systems Principles, 1997.

[50] B. Nadel. Norton core router review. https://www.tomsguide.
com/us/norton-core-router,review-4827.html, November
2017.

[51] B. Nadel. Bitdefender box (2018) review: Flexible protec-
tion. https://www.tomsguide.com/us/bitdefender-box,review-
3766.html, January 2018.

[52] T. Oluwafemi, T. Kohno, S. Gupta, and S. Patel. Experimen-
tal security analyses of non-networked compact fluorescent
lamps: A case study of home automation security. In
Proceedings of the LASER 2013, Arlington, VA, USA (LASER
2013), pages 13–24. USENIX, 2013.

[53] OpenWrt. https://openwrt.org.

[54] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In Proceedings of
the 2008 International Symposium on Software Testing and
Analysis, ISSTA ’08, pages 201–212, New York, NY, USA,
2008. ACM.

[55] Proxy arp. http://www.cisco.com/c/en/us/support/docs/
ip/dynamic-address-allocation-resolution/13718-5.html, Jan-
uary 2008.

[56] Rapid. HACKING IoT: A case study on baby
monitor exposures and vulnerabilities. https:
//www.rapid7.com/docs/Hacking-IoT-A-Case-Study-on-
Baby-Monitor-Exposures-and-Vulnerabilities.pdf, September
2015.

88

[57] S. Saghafi, K. Fisler, and S. Krishnamurthi. Features and
object capabilities: Reconciling two visions of modularity. In
Proceedings of the 11th Annual International Conference on
Aspect-oriented Software Development, AOSD ’12, pages 25–
34, New York, NY, USA, 2012. ACM.

[58] Samsung SmartCam. https://www.exploitee.rs/index.php/
Samsung SmartCam%E2%80%8B#Fixing Password Reset
.22Pre-Auth.22, August 2014.

[59] J. Schwenn. How to protect wordpress from xml-rpc attacks
on ubuntu 14.04. https://www.digitalocean.com/community/
tutorials/how-to-protect-wordpress-from-xml-rpc-attacks-
on-ubuntu-14-04, February 2016.

[60] S. Shekyan and A. Harutyunyan. To watch or to be
watched: Turning your surveillance camera against you.
https://conference.hitb.org/hitbsecconf2013ams/materials/
D2T1%20-%20Sergey%20Shekyan%20and%20Artem%
20Harutyunyan%20-%20Turning%20Your%20Surveillance%
20Camera%20Against%20You.pdf.

[61] S. SmartThings. Samsung smartthings website. http://www.
smartthings.com, 2018.

[62] D. A. Sorensen, N. Vanggaard, and J. M. Peder-
sen. IoTsec: Automatic profile-based firewall for IoT
devices. http://projekter.aau.dk/projekter/files/260081086/
report print friendly.pdf, June 2017.

[63] Spruce - the smart irrigation controller. http://www.
spruceirrigation.com, April 2016.

[64] A. J. Summers and P. Muller. Freedom before commitment-a
lightweight type system for object initialisation. In Proceed-
ings of the 2011 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages &
Applications, 2011.

[65] Tomoyo linux. https://tomoyo.osdn.jp/index.html.en, April
2017.

[66] B. Ur, J. Jung, and S. Schechter. The current state of
access control for smart devices in homes. In Proceedings of
Workshop on Home Usable Privacy and Security, Newcastle,
UK, July 2013 (HUPS), 2013.

[67] S. H. USA. What is a smart home? https://www.
smarthomeusa.com/smarthome/, 2018.

[68] Veracode. The internet of things: Security research study.
https://www.veracode.com/sites/default/files/Resources/
Whitepapers/internet-of-things-whitepaper.pdf, 2015.

[69] G. Wassermann. ZyXEL NBG-418N, PMG5318-B20A and
P-660HW-T1 routers contain multiple vulnerabilities. http:
//www.kb.cert.org/vuls/id/870744, October 2015.

[70] A. Whitaker and D. Newman. Penetration testing and network
defense: Performing host reconnaissance. http://www.
ciscopress.com/articles/article.asp?p=469623&seqNum=3,
June 2018.

[71] Z. Whittaker. Hackers exploiting ‘serious’ flaw in Netgear
routers. http://www.zdnet.com/article/hackers-exploiting-
serious-flaw-in-netgear-routers/, October 2015.

[72] Wink hub. https://www.exploitee.rs/index.php/Wink Hub%
E2%80%8B%E2%80%8B#Wink Hub .22.2Fvar.2Fwww.
2Fdev detail.php.22 SQLi for root command execution.

[73] K. York. Dyn statement on 10/21/2016 ddos attack. http://dyn.
com/blog/dyn-statement-on-10212016-ddos-attack/, October
2016.

[74] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling
a trillion (unfixable) flaws on a billion devices: Rethinking
network security for the Internet-of-Things. In Proceedings
of the 14th ACM Workshop on Hot Topics in Networks
(HotNets), 2015.

[75] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design
and Implementation, 2006.

[76] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing
distributed systems with information flow control. In Proceed-
ings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, 2008.

89

