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ABSTRACT: In this paper, we introduce an infrastructure in 
edge computing environment, KubeEdge, to extend cloud 
capabilities to the edge. In the new form of cloud architecture, 
Cloud consists of computing resources both at centralized 
data centers and at distributed edges. KubeEdge 
infrastructure connects and coordinates two computing 
environments for applications leveraging both computing 
resources to achieve better performance and user experience. 
Technically, KubeEdge provides the network protocol 
infrastructure and the same runtime environment on the edge 
as in the cloud, which allows the seamless communication of 
applications with components running on edge nodes as well 
as cloud servers. It also allows the existing cloud services and 
cloud development model to be adopted at edge. Based on 
Kubernetes [1], KubeEdge architecture includes a network 
protocol stack called KubeBus, a distributed metadata store 
and synchronization service, and a lightweight agent 
(EdgeCore) for the edge. KubeBus is designed to have its 
own implementation of OSI network protocol layers, which 
connects servers at edge and VMs in the cloud as one virtual 
network. KubeBus provides a unified multitenant 
communication infrastructure with fault tolerance and high 
availability. The distributed metadata store and sync service 
is designed to support the offline scenario when edge nodes 
are not connected to the cloud. EdgeController component in 
KubeEdge architecture is a controller plugin for Kubernetes 
[1] to manage remote edge nodes and cloud VMs as one 
logical cluster, which enables KubeEdge to schedule, deploy 
and manage container applications across edge and cloud 
with the same API.   
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I.  INTRODUCTION AND RELATED WORK 

With the rapidly growing requirements for edge based 
applications such as IoT, AI and stream data analytics, Edge 
Computing, which enables computation to be “performed at 
the edge of the network, on downstream data on behalf of 
cloud services and upstream data on behalf of IoT 
services”[2], becomes more and more important for cloud 
computing. 

There are many researches and/or edge computing 
solutions used in various use case scenarios. For example, the 
platform [3] proposed by Hung Cao and Monica Wachowicz 
was deployed on mobile physical devices on the transit bus 

and is used to perform descriptive analytics on real-time 
transit data streams to uncover meaningful patterns.  A recent 
research [4] examined and investigated computation 
partitioning strategies that effectively leverage both the cycles 
in the cloud and on the mobile device to achieve low latency, 
low energy consumption, and high datacenter throughput for 
Deep Neural Networks (DNNs) based machine learning 
intelligent applications. Their study shows that, by scheduling 
DNN computation between mobile devices and data centers,   
it can improve end-to-end latency by 3.1 times, reduce mobile 
energy consumption by 59.5%, and improve datacenter 
throughput by 1.5 times on average.  

In the era of Internet of Thing (IoT), billions of sensors 
and actuators are deployed worldwide. To manage the IoT 
devices and process data with cloud computing resource, 
Cloud providers such as Amazon AWS and Microsoft Azure 
are developing the IoT platform and are providing services or 
solutions on their respective cloud environments. Most IoT 
platforms employ a Pub/Sub brokers such as MQTT [9] or 
AMQP to provide the communication channel between IoT 
devices and Cloud services, like Azure IoT Hub.  

For end-to-end IoT solution, cloud providers also provide 
a component running on the devices or on the edge nodes that 
are close to the devices, such as AWS GreenGrass [5] and 
Azure IoT Edge [6]. These edge components manage the 
execution of local IoT applications and communication 
channel for data transfer to and from the cloud. For example, 
AWS GreenGrass extends the Lambda function environment 
to the edge and allows Lambda functions to be deployed and 
run on GreenGrass nodes, and Pub/Sub protocol is used for 
the communication between cloud and GreenGrass. The same 
is true for Azure IoT solution where Azure edge hub extends 
cloud runtime environment to IoT edge nodes which 
communicate with cloud services through Pub/Sub message 
protocol. Pub/Sub protocol such as MQTT is suitable for 
asynchronous communication between edge devices and 
cloud services. However it does not support synchronous RPC 
based communication, for which we have seen the increased 
need as more and more computation tasks [3][4] move to the 
edges and tightly integrate with services in the cloud.  

One common scenario for RPC based communication is 
the cloud native micro-service based application. With micro-
service architecture, an application is designed into multiple 
micro services, each of which is deployed and managed 
independently. These micro services communicate each other 
usually through REST/HTTP protocol. When some of the 
micro services run on the edge nodes and need to 
communicate with those in the cloud, it requires the one 
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network address space for both edge nodes and server 
instances in the cloud. This is where current edge computing 
solutions break down, partly due to the asynchronous Pub/Sub 
based MQTT protocol. In addition to the communication 
protocol, to achieve the goal that any micro service can freely 
be scheduled to run on the edge or in the cloud, an edge 
platform needs to provide a unified runtime environment 
across devices, edge nodes and cloud servers. This paper 
presents an Edge infrastructure, called KubeEdge. The 
Infrastructure leverages Kubernetes container platform to 
provide RPC based communication channel between edge and 
cloud, the runtime execution environment of containers and 
Serverless functions, as well as a mechanism to sync and store 
metadata to support self-management of an application 
running on the edge in an offline scenario. 

KubeEdge platform is being integrated into our public 
cloud as edge cloud service for evaluation. In this paper, we 
show some of preliminary experimental results and future 
planed works.   

 

II. ARCHITETCURE OF KUBEEDGE 

 
As shown in Figure 1, KubeEdge is a multi-tenant 
infrastructure platform for edge computing.  

 

 
 

Figure 1: KubeEdge Architecture 
 
The platform includes the following components, excluding 
Kubernetes.  
1) KubeBus – A virtual network layer connecting edge 

nodes and cloud VMs as one addressable network space 
in a multi-tenant environment.  
 

2) EdgeController – A Kubernetes controller plugin to 
enable KubeEdge (and Kubernetes) to remotely manage 
edge nodes as the cluster nodes, and allow applications 

or services to be deployed on the edge from the cloud 
through Kubernetes API. 

 
3) MetadataSyncService – A bidirectional metadata sync 

services between edge and cloud for the platform itself 
and user applications.  

 
4) EdgeCore – A lightweight agent running on the edge 

nodes to start up and manage container based 
applications as well as Serverless functions.  

 
The following sections describe each component in detail. 

A. KubeBus 

KubeBus in the KubeEdge architecture is designed to 
address the network connectivity issue for applications 
running on the edge nodes connecting to cloud services, and 
vice visa.  For example, a client video application running in 
the cloud can send http requests to a video streaming web 
service running on the edge nodes through KubeBus even 
though the edge nodes are physically in the private network 
(assume edge servers have Internet access). KubeBus 
component runs both in the cloud (KubeBus@Cloud) and at 
the edge (KubeBus@Edge), and it supports multi-tenancy, 
i.e., edge nodes and the applications running on these edge 
nodes can belong to different tenants where they share the 
same set of KubeBus instances running in the cloud.  
 

1) Edge Node to Edge Node VPN 
In a typical edge environment, an edge node is connected 
within a private local network without public IP address. Two 
edge nodes may be in two different private networks and they 
can’t communicate each other. KubeBus solves the network 
issue by implementing L3 overlay network on top of cloud 
networking (for cloud VMs) and private local network (for 
edge nodes). Figure 2 below describes the implementation 
architecture of KubeBus.  As shown in the diagram, KubeBus 
implements its own L2 and L3 over TCP connection. The 
data link layer in KubeBus@Edge establishes one or more 
long running TCP connection(s) to KubeBus@Cloud. The 
connection is directional duplex communication channel 
allowing either side to send requests or messages to another 
side between cloud and edge. In the case that two edge nodes 
in two different private networks need to communicate each 
other, one edge node sends the IP packet through 
KubeBus@edge to the KubeBus@Cloud and the packet is 
then routed by KubeBus@Cloud to another edge node via the 
already created long running TCP connection.  
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Figure 2: KubeBus Implementation Architecture 
 

2) Connecting Edge Node to Cloud Network 
The second network scenario supported by KubeBus is to 
connect an application running on the edge to the services 
running in the cloud virtual network.  

 

 
Figure 3: Connecting Edge VPN to Cloud Network 

 
In this scenario shown in the Figure 3, two edge nodes are in 
their respective private subnet, created by KubeBus@Edge, 
and all VMs are in the VPC subnet created by cloud network. 
KubeBus then connects edges and VMs together as single 
VPN. This implementation includes a virtual router agent 
installed on one or more of the VMs in the cloud. The 
KubeBus virtual router agent contains the KubeBus network 
protocol stack and acts as a proxy between the edge subnet 
and the cloud VM subnet. 
 

3) KubeEdge Http Protocol Stack 
The following diagram (Figure 4) shows the KubeBus 
protocol stack for Http communication between edge and 
cloud.  

 

 
 

Figure 4: KubeBus Http Protocol Stack 
 

In this protocol stack, transport layer L4 is a reliable 
connection layer built in KubeBus with fault tolerance. This 
layer provides the same interface as TCP, such as Listen, 
Accept, Connect and Disconnect APIs. On top of layer 4 in 
KubeEdge, there are two http reverse proxies implemented 
for direct http communication between edge and cloud.  This 
is designed to support one common edge use case scenario 

where a video stream web service running on an edge node 
that is connected to a video camera locally, and users can 
watch the real-time video from web browsers through the http 
proxies at KubeEdge.   The two http proxies are described as 
follows in detail: 

a) KubeBus Client proxy listens on a TCP port for Http 
requests. Through service discovery, the proxy then forwards 
the requests to the corresponding KubeBus Server proxy at 
the same edge node or at another edge node, or in the cloud.  

b) KubeBus Server proxy knows and manages the actual 
services running on an edge node or in a cloud VM. It 
forwards a request to the requested service, and returns the 
response back to the Client proxy where it gets the request.  

  
To support multi-tenancy, each web service is registered to 
KubeBus with a globally unique identifier consisting of 
tenant id, edge node name and service name. KubeBus uses 
the global identifier as part of URL for forwarding and 
accessing the service, as shown below.  
 

 
 

B. EdgeController 

In Kubernetes architecture [1], Kubelet runs as an agent on 
every node in a Kubernetes cluster. Kubelet watches 
Kubernetes master (API Server) through long running TCP 
connection for tasks to be performed at its node, such as 
starting, stopping and deleting application containers. 
Kubelet also reports the node and container status back to 
Kubernetes master. In the edge environment, edge nodes are 
far away from Kubernetes master running in the cloud, and 
the network connection may not be stable and bandwidth may 
be limited. EdgeController is designed to run in the cloud on 
behalf of edge nodes, i.e. it watches Kubernetes master for 
tasks for all edge nodes it represents. However, instead of 
actually performing these tasks on the edge nodes, 
EdgeController will send the metadata about the tasks to the 
corresponding edge nodes through KubeBus. The AppEngine 
module of EdgeCore component (to be discussed in section 
D) running on the edge node will actually perform the tasks 
assigned to the edge node. Thus, this design splits the normal 
Kubelet function into two parts, one running in the cloud, 
EdgeController and the other running on the edge, 
AppEngine. EdgeController is implemented as a controller 
plugin of Kubernetes so that it can watch Kubernetes master 
for tasks.  
 

C. 3.2 MetadataSyncService 

Metadata Sync Service, by its name, is responsible for 
synchronizing metadata between cloud and edge. The service 
is designed to solve the two issues: 
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1) To address the WAN reliable issue and to support self-
management of the services running on the edge when the 
edge is disconnected from cloud (offline scenario)  

2) To address the low bandwidth issue. In mant cases 
where the network bandwidth is limited at edge, we want to 
keep data size as minimum as possible for data transfer 
during synchronization. In other word, the incremental 
synchronization is preferred than the full snapshot 
synchronization.  
 
Architecturally, the Metadata Sync Service includes two 
components, a metadata store and a synchronization service. 
Both run on the edge and in the cloud. The two instances 
work together to accomplish bidirectional data 
synchronization with fault tolerance. For example, when an 
edge node is offline, the write from cloud side will still 
succeed (writes will be stored in metadata storage). When the 
network connection is restored, the Sync Service will perform 
re-sync since last successful synchronization. The same is 
true for synchronization process from edge to the cloud. Sync 
Service supports atomic write and delta sync. The two data 
stores will be eventually consistent if the network connection 
between edge and cloud lost from time to time.  
 
KubeEdge chooses Etcd [8] as the metadata storage, which 
supports transactional write and Multiple Version Concurrent 
Control (MVCC) API interface to retrieve the delta changes, 
i.e. Get/Watch based on Revision. The algorithm of data 
synchronization is shown in the following list (Listing 1) 

 

 
Listing 1: Synchronization Algorithm 

 
The algorithm is a simple loop, which performs three steps. 
First step is to retrieve the Last Sync Revision (LSR) of last 
successful synchronization from local etcd store, and the 
second step is to calculate delta changes and the new revision 
number. In last step, the algorithm performs a transactional 
write to local etcd store and the changes will be sync to the 
remote etcd store through etcd sync capability. The new 
revision will become the LSR in next loop iteration.  
 

D. EdgeCore 

EdgeCore is a lightweight agent running on every edge node 
that are registered with KubeEdge platform. It packages all 
KubeEdge functionality on the edge into one process. It 
includes KubeBus and MetadataSyncService, AppEngine 
and local etcd store.  

 

III. PRELIMINARY EXPERIMENT 

.  

KubeEdge platform is being integrated with our public 
cloud as the edge cloud service. The platform has been 
evaluated in a test environment shown in Figure 5. In the 
diagram, Kubernetes master (KubeMaster) and two nodes 
(VM1/VM2) run in its container network in the cloud, and two 
edge nodes (Edge1 and Edge2) each run in its own subnets. 
All of these components are connected together through 
KubeBus via Internet. The KubueBus@Cloud run in one 
CentralVM in AWS cloud.  
 

 
 

Figure 5:  KubeEdge Test Environment  
 
The test server configurations are specified in the following 
table (Table 1). 
 

Server Configuration 

VM1 
Amd64,2 core, 4G memory, Ubuntue 16.04  

VM2 

Edge1 
Respberry Pi 3 Model B, 1G memory, Quad 
Core 1.2GHz Broadcom BCM2837 64bit 
CPU, Linux raspberrypi 4.14.0-v7+ 

Edge2 Amd64,2 core, 4G memory, Ubuntue 16.04  

CentralVM Amd64,1 core, 1G memory, Ubuntue 16.04  

 
Table 1: Server Configuration in Test 

 
The initial evaluation is mainly focused on the network 
latency between edge and cloud for assessing the potential 
latency issues when edge nodes and applications are managed 
from the cloud. The table below (Table 2) shows the 
preliminary results.  
 

Connection Latency (ms) 

Edge node 1 to Cloud 30.66 
Edge node 1 to Edge node 2 61.24 
Edge node 1 to VM 1 in the cloud 56.86 
Edge node 1 to VM 2 in the cloud 55.88 
Edge node 1 to Container 1 in VM1 60.68 
Edge node 1 to Container 2 in VM2 66.78 

 
Table 2: Communication Latency between Edge and Cloud 

 
The results show that KubeEdge platform does not contribute 
to the normal network latency in a significant way. Further, 
we tested and compared the latency of deploying a container 
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from KubeMaster to VM, and from KuberMaster to edge node 
(the container image download is not included in the test). The 
result shows that the container deployment latency from 
KubeMaster to VM#1 is about 2 seconds and the container 
deployment latency from KubeMaster to Edge node #1 is 
around 3 seconds, which is at acceptable level.  
 

IV. CONCLUSION AND FUTUREWORK 

 
In this paper, we presented an architecture based on 

Kubernetes platform for edge computing. We showed that it 
is possible for Kubernetes to manage remote edge nodes and 
deploy and manage applications into the edge with the same 
API. We implemented a communication protocol to allow 
seamless bidirectional communication between cloud and 
edge for applications leveraging both edge resources and 
cloud. We extended Kubernetes model from centralized data 
center deployment into the edge with EdgeController and 
EdgeCore components. This work is a preliminary experience 
and we intend to optimize and enhance KubeEdge as future 
work. One future work we consider is the concept and design 
of edge mesh network. In the current communication model, 
the inter-edge communication is through KubeBus at the 
cloud side. We have seen the scenarios that multiple edge 
nodes need to communicate each other directly without cloud, 
mainly due to local private network policies and data security. 
With the direct connections among edge nodes, KubeEdge 
will form a virtual network mesh among all edge nodes, and 

applications and services can leverage computing and storage 
resources on the other edge nodes. Another potential future 
work is the intelligent scheduling for edge applications based 
on data locality, network status and computing power.  
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