
Extend Cloud to Edge with KubeEdge

Ying Xiong, ying.xiong1@huawei.com; Yulin Sun, yulin.sun@huawei.com; Li Xing, Li.xing1@huawei.com; Ying

Huang, ying.huang@huawei.com;

Seattle Cloud Lab, Huawei R&D USA, Bellevue WA

ABSTRACT: In this paper, we introduce an infrastructure in
edge computing environment, KubeEdge, to extend cloud
capabilities to the edge. In the new form of cloud architecture,
Cloud consists of computing resources both at centralized
data centers and at distributed edges. KubeEdge
infrastructure connects and coordinates two computing
environments for applications leveraging both computing
resources to achieve better performance and user experience.
Technically, KubeEdge provides the network protocol
infrastructure and the same runtime environment on the edge
as in the cloud, which allows the seamless communication of
applications with components running on edge nodes as well
as cloud servers. It also allows the existing cloud services and
cloud development model to be adopted at edge. Based on
Kubernetes [1], KubeEdge architecture includes a network
protocol stack called KubeBus, a distributed metadata store
and synchronization service, and a lightweight agent
(EdgeCore) for the edge. KubeBus is designed to have its
own implementation of OSI network protocol layers, which
connects servers at edge and VMs in the cloud as one virtual
network. KubeBus provides a unified multitenant
communication infrastructure with fault tolerance and high
availability. The distributed metadata store and sync service
is designed to support the offline scenario when edge nodes
are not connected to the cloud. EdgeController component in
KubeEdge architecture is a controller plugin for Kubernetes
[1] to manage remote edge nodes and cloud VMs as one
logical cluster, which enables KubeEdge to schedule, deploy
and manage container applications across edge and cloud
with the same API.

KEYWORDS; Edge Computing, Distributed Systems, Cloud
Computing, Network Protocol and Data Synchronization.

I. INTRODUCTION AND RELATED WORK

With the rapidly growing requirements for edge based
applications such as IoT, AI and stream data analytics, Edge
Computing, which enables computation to be “performed at
the edge of the network, on downstream data on behalf of
cloud services and upstream data on behalf of IoT
services”[2], becomes more and more important for cloud
computing.

There are many researches and/or edge computing
solutions used in various use case scenarios. For example, the
platform [3] proposed by Hung Cao and Monica Wachowicz
was deployed on mobile physical devices on the transit bus

and is used to perform descriptive analytics on real-time
transit data streams to uncover meaningful patterns. A recent
research [4] examined and investigated computation
partitioning strategies that effectively leverage both the cycles
in the cloud and on the mobile device to achieve low latency,
low energy consumption, and high datacenter throughput for
Deep Neural Networks (DNNs) based machine learning
intelligent applications. Their study shows that, by scheduling
DNN computation between mobile devices and data centers,
it can improve end-to-end latency by 3.1 times, reduce mobile
energy consumption by 59.5%, and improve datacenter
throughput by 1.5 times on average.

In the era of Internet of Thing (IoT), billions of sensors
and actuators are deployed worldwide. To manage the IoT
devices and process data with cloud computing resource,
Cloud providers such as Amazon AWS and Microsoft Azure
are developing the IoT platform and are providing services or
solutions on their respective cloud environments. Most IoT
platforms employ a Pub/Sub brokers such as MQTT [9] or
AMQP to provide the communication channel between IoT
devices and Cloud services, like Azure IoT Hub.

For end-to-end IoT solution, cloud providers also provide
a component running on the devices or on the edge nodes that
are close to the devices, such as AWS GreenGrass [5] and
Azure IoT Edge [6]. These edge components manage the
execution of local IoT applications and communication
channel for data transfer to and from the cloud. For example,
AWS GreenGrass extends the Lambda function environment
to the edge and allows Lambda functions to be deployed and
run on GreenGrass nodes, and Pub/Sub protocol is used for
the communication between cloud and GreenGrass. The same
is true for Azure IoT solution where Azure edge hub extends
cloud runtime environment to IoT edge nodes which
communicate with cloud services through Pub/Sub message
protocol. Pub/Sub protocol such as MQTT is suitable for
asynchronous communication between edge devices and
cloud services. However it does not support synchronous RPC
based communication, for which we have seen the increased
need as more and more computation tasks [3][4] move to the
edges and tightly integrate with services in the cloud.

One common scenario for RPC based communication is
the cloud native micro-service based application. With micro-
service architecture, an application is designed into multiple
micro services, each of which is deployed and managed
independently. These micro services communicate each other
usually through REST/HTTP protocol. When some of the
micro services run on the edge nodes and need to
communicate with those in the cloud, it requires the one

373

2018 Third ACM/IEEE Symposium on Edge Computing

DOI 10.1109/SEC.2018.00048

network address space for both edge nodes and server
instances in the cloud. This is where current edge computing
solutions break down, partly due to the asynchronous Pub/Sub
based MQTT protocol. In addition to the communication
protocol, to achieve the goal that any micro service can freely
be scheduled to run on the edge or in the cloud, an edge
platform needs to provide a unified runtime environment
across devices, edge nodes and cloud servers. This paper
presents an Edge infrastructure, called KubeEdge. The
Infrastructure leverages Kubernetes container platform to
provide RPC based communication channel between edge and
cloud, the runtime execution environment of containers and
Serverless functions, as well as a mechanism to sync and store
metadata to support self-management of an application
running on the edge in an offline scenario.

KubeEdge platform is being integrated into our public
cloud as edge cloud service for evaluation. In this paper, we
show some of preliminary experimental results and future
planed works.

II. ARCHITETCURE OF KUBEEDGE

As shown in Figure 1, KubeEdge is a multi-tenant
infrastructure platform for edge computing.

Figure 1: KubeEdge Architecture

The platform includes the following components, excluding
Kubernetes.
1) KubeBus – A virtual network layer connecting edge

nodes and cloud VMs as one addressable network space
in a multi-tenant environment.

2) EdgeController – A Kubernetes controller plugin to
enable KubeEdge (and Kubernetes) to remotely manage
edge nodes as the cluster nodes, and allow applications

or services to be deployed on the edge from the cloud
through Kubernetes API.

3) MetadataSyncService – A bidirectional metadata sync

services between edge and cloud for the platform itself
and user applications.

4) EdgeCore – A lightweight agent running on the edge

nodes to start up and manage container based
applications as well as Serverless functions.

The following sections describe each component in detail.

A. KubeBus

KubeBus in the KubeEdge architecture is designed to
address the network connectivity issue for applications
running on the edge nodes connecting to cloud services, and
vice visa. For example, a client video application running in
the cloud can send http requests to a video streaming web
service running on the edge nodes through KubeBus even
though the edge nodes are physically in the private network
(assume edge servers have Internet access). KubeBus
component runs both in the cloud (KubeBus@Cloud) and at
the edge (KubeBus@Edge), and it supports multi-tenancy,
i.e., edge nodes and the applications running on these edge
nodes can belong to different tenants where they share the
same set of KubeBus instances running in the cloud.

1) Edge Node to Edge Node VPN
In a typical edge environment, an edge node is connected
within a private local network without public IP address. Two
edge nodes may be in two different private networks and they
can’t communicate each other. KubeBus solves the network
issue by implementing L3 overlay network on top of cloud
networking (for cloud VMs) and private local network (for
edge nodes). Figure 2 below describes the implementation
architecture of KubeBus. As shown in the diagram, KubeBus
implements its own L2 and L3 over TCP connection. The
data link layer in KubeBus@Edge establishes one or more
long running TCP connection(s) to KubeBus@Cloud. The
connection is directional duplex communication channel
allowing either side to send requests or messages to another
side between cloud and edge. In the case that two edge nodes
in two different private networks need to communicate each
other, one edge node sends the IP packet through
KubeBus@edge to the KubeBus@Cloud and the packet is
then routed by KubeBus@Cloud to another edge node via the
already created long running TCP connection.

374

Figure 2: KubeBus Implementation Architecture

2) Connecting Edge Node to Cloud Network
The second network scenario supported by KubeBus is to
connect an application running on the edge to the services
running in the cloud virtual network.

Figure 3: Connecting Edge VPN to Cloud Network

In this scenario shown in the Figure 3, two edge nodes are in
their respective private subnet, created by KubeBus@Edge,
and all VMs are in the VPC subnet created by cloud network.
KubeBus then connects edges and VMs together as single
VPN. This implementation includes a virtual router agent
installed on one or more of the VMs in the cloud. The
KubeBus virtual router agent contains the KubeBus network
protocol stack and acts as a proxy between the edge subnet
and the cloud VM subnet.

3) KubeEdge Http Protocol Stack
The following diagram (Figure 4) shows the KubeBus
protocol stack for Http communication between edge and
cloud.

Figure 4: KubeBus Http Protocol Stack

In this protocol stack, transport layer L4 is a reliable
connection layer built in KubeBus with fault tolerance. This
layer provides the same interface as TCP, such as Listen,
Accept, Connect and Disconnect APIs. On top of layer 4 in
KubeEdge, there are two http reverse proxies implemented
for direct http communication between edge and cloud. This
is designed to support one common edge use case scenario

where a video stream web service running on an edge node
that is connected to a video camera locally, and users can
watch the real-time video from web browsers through the http
proxies at KubeEdge. The two http proxies are described as
follows in detail:

a) KubeBus Client proxy listens on a TCP port for Http
requests. Through service discovery, the proxy then forwards
the requests to the corresponding KubeBus Server proxy at
the same edge node or at another edge node, or in the cloud.

b) KubeBus Server proxy knows and manages the actual
services running on an edge node or in a cloud VM. It
forwards a request to the requested service, and returns the
response back to the Client proxy where it gets the request.

To support multi-tenancy, each web service is registered to
KubeBus with a globally unique identifier consisting of
tenant id, edge node name and service name. KubeBus uses
the global identifier as part of URL for forwarding and
accessing the service, as shown below.

B. EdgeController

In Kubernetes architecture [1], Kubelet runs as an agent on
every node in a Kubernetes cluster. Kubelet watches
Kubernetes master (API Server) through long running TCP
connection for tasks to be performed at its node, such as
starting, stopping and deleting application containers.
Kubelet also reports the node and container status back to
Kubernetes master. In the edge environment, edge nodes are
far away from Kubernetes master running in the cloud, and
the network connection may not be stable and bandwidth may
be limited. EdgeController is designed to run in the cloud on
behalf of edge nodes, i.e. it watches Kubernetes master for
tasks for all edge nodes it represents. However, instead of
actually performing these tasks on the edge nodes,
EdgeController will send the metadata about the tasks to the
corresponding edge nodes through KubeBus. The AppEngine
module of EdgeCore component (to be discussed in section
D) running on the edge node will actually perform the tasks
assigned to the edge node. Thus, this design splits the normal
Kubelet function into two parts, one running in the cloud,
EdgeController and the other running on the edge,
AppEngine. EdgeController is implemented as a controller
plugin of Kubernetes so that it can watch Kubernetes master
for tasks.

C. 3.2 MetadataSyncService

Metadata Sync Service, by its name, is responsible for
synchronizing metadata between cloud and edge. The service
is designed to solve the two issues:

375

1) To address the WAN reliable issue and to support self-
management of the services running on the edge when the
edge is disconnected from cloud (offline scenario)

2) To address the low bandwidth issue. In mant cases
where the network bandwidth is limited at edge, we want to
keep data size as minimum as possible for data transfer
during synchronization. In other word, the incremental
synchronization is preferred than the full snapshot
synchronization.

Architecturally, the Metadata Sync Service includes two
components, a metadata store and a synchronization service.
Both run on the edge and in the cloud. The two instances
work together to accomplish bidirectional data
synchronization with fault tolerance. For example, when an
edge node is offline, the write from cloud side will still
succeed (writes will be stored in metadata storage). When the
network connection is restored, the Sync Service will perform
re-sync since last successful synchronization. The same is
true for synchronization process from edge to the cloud. Sync
Service supports atomic write and delta sync. The two data
stores will be eventually consistent if the network connection
between edge and cloud lost from time to time.

KubeEdge chooses Etcd [8] as the metadata storage, which
supports transactional write and Multiple Version Concurrent
Control (MVCC) API interface to retrieve the delta changes,
i.e. Get/Watch based on Revision. The algorithm of data
synchronization is shown in the following list (Listing 1)

Listing 1: Synchronization Algorithm

The algorithm is a simple loop, which performs three steps.
First step is to retrieve the Last Sync Revision (LSR) of last
successful synchronization from local etcd store, and the
second step is to calculate delta changes and the new revision
number. In last step, the algorithm performs a transactional
write to local etcd store and the changes will be sync to the
remote etcd store through etcd sync capability. The new
revision will become the LSR in next loop iteration.

D. EdgeCore

EdgeCore is a lightweight agent running on every edge node
that are registered with KubeEdge platform. It packages all
KubeEdge functionality on the edge into one process. It
includes KubeBus and MetadataSyncService, AppEngine
and local etcd store.

III. PRELIMINARY EXPERIMENT

.

KubeEdge platform is being integrated with our public
cloud as the edge cloud service. The platform has been
evaluated in a test environment shown in Figure 5. In the
diagram, Kubernetes master (KubeMaster) and two nodes
(VM1/VM2) run in its container network in the cloud, and two
edge nodes (Edge1 and Edge2) each run in its own subnets.
All of these components are connected together through
KubeBus via Internet. The KubueBus@Cloud run in one
CentralVM in AWS cloud.

Figure 5: KubeEdge Test Environment

The test server configurations are specified in the following
table (Table 1).

Server Configuration

VM1
Amd64,2 core, 4G memory, Ubuntue 16.04

VM2

Edge1
Respberry Pi 3 Model B, 1G memory, Quad
Core 1.2GHz Broadcom BCM2837 64bit
CPU, Linux raspberrypi 4.14.0-v7+

Edge2 Amd64,2 core, 4G memory, Ubuntue 16.04

CentralVM Amd64,1 core, 1G memory, Ubuntue 16.04

Table 1: Server Configuration in Test

The initial evaluation is mainly focused on the network
latency between edge and cloud for assessing the potential
latency issues when edge nodes and applications are managed
from the cloud. The table below (Table 2) shows the
preliminary results.

Connection Latency (ms)

Edge node 1 to Cloud 30.66
Edge node 1 to Edge node 2 61.24
Edge node 1 to VM 1 in the cloud 56.86
Edge node 1 to VM 2 in the cloud 55.88
Edge node 1 to Container 1 in VM1 60.68
Edge node 1 to Container 2 in VM2 66.78

Table 2: Communication Latency between Edge and Cloud

The results show that KubeEdge platform does not contribute
to the normal network latency in a significant way. Further,
we tested and compared the latency of deploying a container

376

from KubeMaster to VM, and from KuberMaster to edge node
(the container image download is not included in the test). The
result shows that the container deployment latency from
KubeMaster to VM#1 is about 2 seconds and the container
deployment latency from KubeMaster to Edge node #1 is
around 3 seconds, which is at acceptable level.

IV. CONCLUSION AND FUTUREWORK

In this paper, we presented an architecture based on

Kubernetes platform for edge computing. We showed that it
is possible for Kubernetes to manage remote edge nodes and
deploy and manage applications into the edge with the same
API. We implemented a communication protocol to allow
seamless bidirectional communication between cloud and
edge for applications leveraging both edge resources and
cloud. We extended Kubernetes model from centralized data
center deployment into the edge with EdgeController and
EdgeCore components. This work is a preliminary experience
and we intend to optimize and enhance KubeEdge as future
work. One future work we consider is the concept and design
of edge mesh network. In the current communication model,
the inter-edge communication is through KubeBus at the
cloud side. We have seen the scenarios that multiple edge
nodes need to communicate each other directly without cloud,
mainly due to local private network policies and data security.
With the direct connections among edge nodes, KubeEdge
will form a virtual network mesh among all edge nodes, and

applications and services can leverage computing and storage
resources on the other edge nodes. Another potential future
work is the intelligent scheduling for edge applications based
on data locality, network status and computing power.

REFERENCES.
[1] “Kubernetes: Production-Grade Container Orchestration”,

https://kubernetes.io/

[2] Quan Zhang, Xiaohong Zhang, Weisong Shi, “Firework: Big Data
Processing in Collaborative Edge Environment”, 2016 IEEE/ACM
Symposium on Edge Computing (SEC).

[3] Hung Cao and Monica Wachowicz, Sangwhan Cha: Developing an
edge computing platform for real-time descriptive analytics. 2017
IEEE International Conference on Big Data (Big Data) 11-14 Dec.
2017.

[4] Y Kang, J Hauswald, C Gao, A Rovinski, T Mudge, J Mars, L Tang,
“Collaborative Intelligence Between the Cloud and Mobile Edge”, CM
SIGPLAN Notices 52 (4), 615-629.

[5] “AWS Greengrass Document”,
https://docs.aws.amazon.com/greengrass

[6] “Azure IoT Edge”, https://azure.microsoft.com/en-us/services/iot-
edge/

[7] “OpenVPN: Your private path to access network resource and service
securely”, https://openvpn.net/

[8] “etcd: A distributed, reliable key-value store for the most critical data
of a distributed system”, https://coreos.com/etcd/

[9] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s -a
publish/subscribe protocol for wireless sensor networks,” in
Communication systems software and middleware and workshops,
2008

377

