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I. INTRODUCTION

Resource provisioning is a challenging issue for Mobile
Edge Computing (MEC) service providers significantly im-
pacting the efficiency of the system and the Quality of Ser-
vice (QoS). This is due to the existence of nondeterministic
parameters which makes it difficult to manage the resources ef-
ficiently. Researches have addressed the resource provisioning
problem in Cloud Computing (CC) considering the uncertainty
of parameters. Maguluri et al. [3] introduced a stochastic
model for load balancing and scheduling in CC clusters,
where the arrival time and duration of jobs are stochastic.
Chaisiri et al. [2] proposed a stochastic model for the cloud
resource provisioning problem under uncertainty of resource
prices and demands. Wang et al. [5] developed a model for
mapping virtual machines into cloud servers assuming that the
completion time of the requests of users is stochastic.

Compared to CC, resource provisioning in MEC is expected
to be more challenging. First, resource requirements of mobile
applications are unknown prior to running applications on
servers, and second, edge servers have more restricted capacity
than the cloud servers. In this paper, we propose a risked-
based optimization approach to resource provisioning in MEC
systems with the aim of taking into account the risk of
overloading of edge servers when making allocation decisions.
Assuming that resource requirements of mobile applications
are stochastic parameters, we formulate the problem as a
chance-constrained stochastic program. In order to solve the
problem in reasonable amount of time, we employ the Sample
Average Approximation (SAA) method [1]. We evaluate the
efficiency of the proposed approach by conducting an experi-
mental analysis on instances with different problem settings.

Our contributions are as follows: (i) We propose a risk-
based optimization approach to resource provisioning problem
in MEC; (ii) We propose a clustering-based approach to
approximate the probability distributions of resource require-

ments of mobile applications; (iii) We propose the use of
the SAA method to solve the chance-constrained stochastic
program; and (iv) We provide a comprehensive analysis of the
effects of the overloading risk factor on the utilization rates of
servers and the QoS.

II. RISK-BASED OPTIMIZATION MODEL

We consider a two-level (i.e., cloud and edge) MEC system,
and denote the set of levels by L, where ` ∈ L, and ` = 1
represents the edge level, and ` = 2, the cloud level. There
are M ` servers at each level. The set of servers at the edge
level, the set of servers at the cloud level, and the set of
all servers are denoted by M1, M2, and M, respectively.
These servers provide K types of computing resources to N
independent requests from mobile applications. We denote the
set of computing resources by K, and the set of requests
by U . We assume that application i requires an R̃ik amount of
resource of type k, which is a nondeterministic parameter. We
assume that each edge server has an available capacity of Cjk

for resource of type k. We also assume that cloud servers are
uncapacitated. We denote the distance of user i from server j
by dij . We formulate the risked-based resource provisioning
in MEC systems as a chance-constrained stochastic program,

Minimize
∑
i∈U

∑
j∈M

∑
`∈L

γ · dij · x`ij (1)

Subject to:

p

{∑
i∈U

R̃ikx
`
ij ≤ Cjk, ∀j ∈M1, k ∈ K

}
≥ (1− α)

(2)∑
j∈M

∑
`∈L

x`ij = 1 ∀i ∈ U (3)

x`ij ∈ {0, 1} ∀i ∈ U , j ∈M, ` ∈ L (4)



 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

0.05 0.10 0.15 20

A
v
e

ra
g

e
 u

ti
liz

a
ti
o

n
 r

a
ti
o

α

CPU
Memory

(a)

 0.835

 0.84

 0.845

 0.85

 0.855

 0.86

 0.865

 0.87

 0.875

0.05 0.10 0.15 20

Q
u

a
lit

y
 o

f 
s
e

rv
ic

e
 (

Q
o

S
)

α

(b)

Fig. 1: (a) Average utilization ratio of edge servers, and (b) Quality of service vs. overloading risk factor

where, the objective function is to minimize the total com-
munication cost between mobile applications and servers.
We assume that the communication cost is proportional to
the distance between users and the server that performs the
request, considering a coefficient of proportionality, γ. In this
formulation, x`ij is a binary variable, that is 1 if the request of
user i is allocated to server j at level `, and, 0 otherwise.
Constraint (2) ensures that overloading of an edge server
does not occur more than as specified by the risk factor α.
Constraint (3) ensures that each request is satisfied and is
not allocated to more than one server. Finally, Constraint (4)
guarantees the integrality of the decision variables. Chance-
constrained stochastic programs are difficult to solve, due
to the nonconvexity and feasibility checking issues. Here,
we employ the SAA method to solve the chance-constrained
program. Let us define, G(x, ξs) =

∑
i∈U R̃

s
ikxij−Cjk where,

R̃s
ik is the realization of parameter R̃ik based on scenario s.

Then, we can formulate the SAA problem as a mixed-integer
program (MIP),

Minimize
∑
i∈U

∑
j∈M

∑
`∈L

γ · dij · x`ij (5)

Subject to:

G(x, ξs) ≤W · zs ∀j ∈M1, k ∈ K, s ∈ Θ (6)∑
s∈Θ

zs ≤ α · S (7)∑
j∈M

∑
`∈L

x`ij = 1 ∀i ∈ U (8)

x`ij ∈ {0, 1} ∀i ∈ U , j ∈M, ` ∈ L (9)

zs ∈ {0, 1} ∀s ∈ Θ (10)

where the objective function is the same as is in the previous
chance-constrained model. In Constraint (6), W is a very
large positive number, and zs is a binary variable. If zs is 1,
the capacity constraint can be violated under realization of
scenario s, and if it is 0, otherwise. Also, Θ is the independent
identically distributed (iid) sample of S realizations of R̃s

ik.
Constraint (7) guarantees that number of violated capacity
constraints is not more than α ·S. Constraints (8) and (9) were
described in the chance-constrained model. Constraint (10)
guarantees the integrality of zs.

III. EXPERIMENTAL ANALYSIS

In this section, we present our experimental analysis on
the effects of the overloading risk factor on the performance
of the MEC system when employing our risk-based opti-
mization approach. We use the dataset provided by [4] on
smartphones. The dataset used in our analysis consists of
156,017 records. We use two thirds of the records (randomly
selected) for clustering and fitting probability distributions,
and the remaining one third of the records for the analysis of
our optimization approach. We apply the K-means clustering
method to cluster applications based on the following features:
(i) amount of data transmitted; (ii) number of packets received;
(iii) total CPU utilization in percentage; and (iv) total memory
used in the Android heap. In each cluster, we approximate
the probability distribution parameters of the usage of two
important resources, CPU and memory. In our analysis, we
cluster applications into ten clusters. We consider a MEC
system with five edge servers, and two servers at the cloud
level. We perform our analysis by taking a sample of 100
applications in each run of our algorithm. We solve the
MIP model using the CPLEX solver provided by IBM ILOG
CPLEX optimization studio for academics initiative. We run
each experiment five times and perform our analysis based on
the average value of the metrics.

Figures 1a and 1b show the effects of the overloading risk
factor, α, on the system performance when employing our
risk-based optimization approach. We use two measures for
the performance of the MEC system, the utilization ratio of
edge servers, and the QoS. We use the actual resource usage
of the applications to compute the utilization rate of each edge
server. We define the QoS as, QoS =

∑
i∈U

∑
j∈M1 x̄1

ij

N , where
x̄1
ij is the value of variable x1

ij taken from the MIP solution.
In Figure 1a, we observe that the average utilization ratio

of both resources (i.e., CPU and memory) increases with the
increase in the overloading risk factor. We also observe that
edge servers have higher CPU utilization ratios than those of
the memory. When a low risk factor is used, our approach
makes the system operate at low resource utilization levels
to avoid overloading. With higher levels of the risk factor,
our approach considers a higher allowance to allocate more
requests to edge servers. Figure 1b shows the effect of the
overloading risk factor on the QoS. Similar to the utilization
ratio, higher levels of the risk factor results in a higher QoS
through allocating more requests at the edge level.



REFERENCES

[1] S. Ahmed and A. Shapiro. Solving chance-constrained stochastic
programs via sampling and integer programming. In State-of-the-Art
Decision-Making Tools in the Information-Intensive Age, pages 261–269.
INFORMS, 2008.

[2] S. Chaisiri, B.-S. Lee, and D. Niyato. Optimization of resource provision-
ing cost in cloud computing. IEEE Trans. Services Comp., 5(2):164–177,
2012.

[3] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic models of load
balancing and scheduling in cloud computing clusters. In Proc. IEEE
INFOCOM, pages 702–710, 2012.

[4] Y. Mirsky, A. Shabtai, L. Rokach, B. Shapira, and Y. Elovici. Sherlock
vs moriarty: A smartphone dataset for cybersecurity research. In Proc.
ACM Workshop on Artificial Intelligence and Security, pages 1–12, 2016.

[5] Z. Wang, M. M. Hayat, N. Ghani, and K. B. Shaban. A probabilistic
multi-tenant model for virtual machine mapping in cloud systems. In
Proc. 3rd IEEE Int. Conf. on Cloud Networking, pages 339–343, 2014.


