
Poster: Towards a Distributed and Self-Adaptable
Cloud-Edge Middleware

Julien Gascon-Samson
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

julien.gascon-samson@ece.ubc.ca

Kumseok Jung
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

kumseok@ece.ubc.ca

Karthik Pattabiraman
Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada
karthikp@ece.ubc.ca

Abstract—The Internet of Things (IoT) landscape has grown
tremendously over the past few years. Modern devices are getting
more powerful, and are therefore gaining the ability to execute
complex and rich applications (edge computing), which can yield
many benefits compared to traditional, cloud-centric models. On
the other end, the use of high-level languages (e.g., JavaScript)
allows programmers to abstract low-level considerations, and
gives the ability to run the same code across different platforms.
In this paper, we describe the main features of ThingsJS,
our comprehensive self-adaptive cloud-edge middleware that
allows for designing and running high-level, complex applications
written in JavaScript on the IoT devices themselves.

Index Terms—Cloud-Edge Computing, Internet of Things,
Distributed Systems, Middleware, JavaScript, Self-Adaptation

I. INTRODUCTION

The Internet of Things involves a plethora of interconnected
devices that produce and consume large amounts of data. Over
the last few years, the IoT landscape has grown tremendously,
and applications can be found across multiple domains, both
in academic and industrial circles. Gartner estimates that there
will be over 20 billion IoT devices by 2020 [1].

While traditional IoT devices consist mostly of low-level
embedded sensors and actuators, a more recent generation of
devices has emerged. Such devices; e.g., the popular Raspberry
Pi series, are getting more and more powerful and connected,
and are quickly evolving beyond their traditional role of
low-level embedded sensors and actuators to become more
akin to embedded computers. As such, they can execute full
operating systems, such as various distributions of Linux,
thereby opening the door to running complex, rich and high-
level applications directly on these devices, at the edge of the
network (i.e., edge computing). Overall, we believe that edge
computing provides many benefits, compared to the traditional
(i.e., cloud-centric) model, such as reducing bandwidth and
infrastructure costs; alleviating the dependence on third-party
datacenters and on constant Internet connectivity; and reducing
latency, which can have an impact on real-time data processing
and decision making [2].

On the other hand, to bridge the heterogeneity of the IoT
landscape, there is a strong incentive for establishing common

This work is supported by a research gift from Intel, a Discovery grant and
Post-Doctoral Fellowship from the Natural Sciences and Engineering Research
Council of Canada (NSERC).

paradigms and high-level abstractions. We believe this can be
done through high-level, platform-independent languages and
frameworks. Not confined anymore to the realms of the web,
JavaScript has grown over the last few years as a mature and
dynamic language on its own [3], and applications can be
found in the desktop, mobile and server spaces, and more
recently, in the IoT world [4]–[14]. In addition to its popu-
larity, JavaScript has many properties (e.g., event-driven and
asynchronous model) that make it well suited for developing
high-level, platform-independent IoT applications.

In this paper, we present ThingsJS1, our comprehensive
platform for designing and deploying high-level edge appli-
cations written in JavaScript onto the IoT devices themselves,
in combination with the cloud. ThingsJS provides a set of APIs
and high-level services for developers, a set of self-adaptation
features, and rich graphical and console-based user interfaces
to observe and interact with the system.

II. THINGSJS: A CLOUD-EDGE FRAMEWORK

1) Edge Application Model: ThingsJS primarily executes
high-level applications in the edge2, but also takes advantage of
cloud resources. At its core, a ThingsJS deployment contains
a set of devices (edge and cloud). Developers write ThingsJS
Applications, which are logical packages regrouping a set
of components (i.e., written in JavaScript) to be executed
on the available devices. For instance, a typical temperature
regulation application for a large building might comprise a
set of sensor instances that collect temperature readings (e.g.,
sensor.js), a set of actuator instances that control the
power output to the heaters / AC units (e.g., actuator.js),
as well as one instance of a regulator (e.g., regulator.js)
to manage the temperature across the building, based on
sensor data. Other examples of ThingsJS applications include a
video-surveillance application, which comprises a set of video
camera components, and a set of motion detection components
that detect potential intrusions [16]).

1A vision paper outlining an earlier vision of ThingsJS was published at
the 2017 Middleware for IoT (m4iot) workshop [15]. This paper presents our
more recent work and vision.

2We use the term in the edge to indicate that high-level applications are
running on the IoT devices themselves. Some other work use the expression
close to the edge to refer to applications that are running on intermediate
nodes of the cloud-to-device infrastructure, etc.



2) Constraints: Given the amount of devices and compo-
nents that a ThingsJS system can comprise, requiring devel-
opers to manually deploy components to devices is neither
feasible nor optimal. Rather, ThingsJS manages the scheduling
in a completely automated fashion (more in Section III-1).
To assist ThingsJS in making optimal scheduling decisions,
ThingsJS provides a rich constraint system that developers use
to express the capabilities and requirements of the devices and
components (e.g., processing power (CPU), memory, band-
width, latency) as well as any application-specific constraint
(e.g., the required FPS rate for the video-surveillance applica-
tion, etc.). Classes of devices can be specified in a hierarchical
manner, allowing system operators to define constraints for
multiple devices at once. Also, ThingsJS also allows for some
constraints to be refreshed at runtime – for instance, the
remaining memory on the devices, or the resources consumed
by an application, can be monitored and updated.

3) APIs and Services: The ThingsJS framework exposes
a rich set of APIs that developers can leverage to access a
set of distributed services provided by the ThingsJS Runtime.
In particular, developers can access a distributed file system
shared by all nodes (built over MongoDB), can use the MQTT
interface to communicate with other nodes (more below), and
can interact with the various components of the ThingsJS
Runtime (Section III).

4) Communications: To provide more standardized com-
munication interfaces between components, ThingsJS uses the
MQTT (topic-based publish/subscribe) protocol [17], which
enjoys widespread popularity in the IoT space (and across
many other applications), as it provides event-based abstrac-
tions, and enables the logical decoupling of components that
produce and consume content. Service implementation is
currently centralized, we are working towards a decentralized
solution in the edge.

III. THINGSJS: A SELF-ADAPTIVE RUNTIME

The ThingsJS Runtime is a distributed substrate that is
deployed on all devices that are part of the ThingsJS system.
It manages the execution of all ThingsJS applications, and
includes self-adaptation measures to increase the dynamicity
and the dependability of the system.

1) Scheduling: At its core, a ThingsJS system contains a set
of devices (edge and cloud) D, as well as a set of applications
A each comprising a set of components C. For each component
C ∈ C running in the system, the scheduling problem involves
finding the most optimal edge (or cloud) device D ∈ D to
host that component, according to an optimization function.
The different device-related and component-related constraints
(Section II-2) must be considered, and any eventual rebal-
ancing should attempt to minimize the costs of rebalancing.
Currently, we have currently implemented a simple memory-
based first-fit scheduler – more refined algorithms are planned.

2) Failure Detection: The ThingsJS Runtime proactively
detects imminent component failures on devices, with enough
lead time as to perform eventual mitigation actions. In our
case, an imminent failure triggers a rescheduling, which in

turn triggers the migration (Section III-3) of the component(s)
in danger of failing.

3) Dynamic Migration: We have developed a novel tech-
nique for migrating stateful JavaScript applications be-
tween heterogeneous devices (i.e., ThingsMigrate [16]). The
ThingsJS Runtime integrates this technique as part as its
dynamic adaptation strategies: whenever a new schedule is
produced, stateful components (i.e., components for which
the state should be preserved when migrating them) are
transparently migrated between heterogeneous devices with
the help of ThingsMigrate.

4) Distributed Data and Communications: A question
arises on where the data used by different components hosted
on different devices should be placed. ThingsJS supports the
transparent redirection of data streams in components that are
migrated (e.g., a file read by component C on device D1

migrated to device D2 will be redirected from D1 to D2).
From a more generic perspective, we believe that the global file
system itself could be distributed over the cloud-edge overlay,
and be provided as a distributed service in the edge.

We are also looking into distributed publish/subscribe mod-
els that could benefit from the resources of the edge, as to
minimize the MQTT-based communication costs and latencies.

5) Global and Unified Adaptation: As mentioned earlier,
dynamic adaptation can be done in various ways: the com-
putations, the data and the communications can be distributed
onto the devices, as to benefit from the edge resources to meet
optimization objectives while ensuring that constraints are met.
To truly unleash the potential of a self-adaptive system, there
is a need to come up with global, unified adaptation policies
that will take these various dimensions into consideration
simultaneously. This is one of the long-term goals of ThingsJS.

IV. THINGSJS: USER INTERFACES

1) Web Dashboard: ThingsJS provides a comprehensive
web dashboard interface that allows for interacting and ob-
serving the different components of the system. The dash-
board allows users to observe the state of the devices (edge
and cloud), create, edit, launch, migrate and stop ThingsJS
applications and components, observe the status of the system
scheduler (current schedule and history of past schedules)
through different graphical views, etc.

2) Console-Based Interface: In addition to a web interface,
ThingsJS provides a distributed console-based interface that
offers a similar set of features as the web dashboard.

V. CONCLUSION

We presented ThingsJS, a middleware that allows develop-
ers to create and execute high-level distributed applications
written in JavaScript in the edge. ThingsJS provides a rich
application and constraint model, combined with a set of
powerful APIs and services that ease the development of
rich IoT apps. Further, it provides a self-adaptive runtime
environment that dynamically schedules the execution of the
applications onto the available devices. Finally, ThingsJS
provides a comprehensive web dashboard and command-line
interface for administering and monitoring the system.



REFERENCES

[1] “Programming the internet of things with node.js an,”
https://www.gartner.com/newsroom/id/3165317, 2018.

[2] M. James, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and
D. Aharon, “The internet of things: Mapping the value beyond the hype,”
McKinsey Global Institute, vol. 3, 2015.

[3] “Tiobe index,” https://www.tiobe.com/tiobe-index/, 2017.
[4] “Programming the internet of things with node.js and

html5,” https://conferences.oreilly.com/solid/internet-of-things-
2015/public/schedule/detail/40797, 2018.

[5] “Nodebots – the rise of js robotics,” http://nodebots.io/, 2018.
[6] “Cylon.js – javascript framework for robotics, physical computing, and

the internet of things using node.js,” http://cylonjs.com/, 2018.
[7] “Johnny-five: The javascript robotics & iot platform,” http://johnny-

five.io/, 2018.
[8] E. Gavrin, S.-J. Lee, R. Ayrapetyan, and A. Shitov, “Ultra lightweight

javascript engine for internet of things,” in SPLASH Companion 2015.
New York, NY, USA: ACM, 2015, pp. 19–20.

[9] (2017) Intel xdk. [Online]. Available: https://software.intel.com/en-
us/xdk

[10] DukTape, 2017. [Online]. Available: http://www.duktape.org/
[11] mjs, 2017. [Online]. Available: https://github.com/cesanta/mjs
[12] S. Tilkov and S. Vinoski, “Node. js: Using javascript to build high-

performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, 2010.

[13] “Chakracore javascript engine source code.”
https://github.com/Microsoft/ChakraCore, 2018.

[14] “Spidermonkey - mozilla — mdn,” 2018.
[15] J. Gascon-Samson, M. Rafiuzzaman, and K. Pattabiraman, “Thingsjs:

Towards a flexible and self-adaptable middleware for dynamic and
heterogeneous iot environments,” in Proceedings of the 4th Workshop
on Middleware and Applications for the Internet of Things, ser. M4IoT
’17, 2017, pp. 11–16.

[16] J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and K. Pat-
tabiraman, “Thingsmigrate: Platform-independent migration of stateful
javascript iot applications,” in LIPIcs-Leibniz International Proceedings
in Informatics, vol. 109. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[17] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.


