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Abstract—The accuracy of object recognition has been greatly
improved due to the rapid development of deep learning, but
the deep learning generally requires a lot of training data and
the training process is very slow and complex. In this work, an
Intel Movidius™ Neural Compute Stick along with Raspberry
Pi 3 Model B is used to analyze the objects in the real time
images and videos for vehicular edge computing. The results
shown in this study tells how the stick performs in conjunction
with different operating systems and processing power.

Index Terms—Edge computing, Deep learning, Embedded
computing, Object detection, Vehicular system.

I. INTRODUCTION

The need for low-power but capable inference processors
has produced a new class of computing called edge, or
sometimes ”fog” computing. These stand-alone, specialized
edge-computing devices has become more and more popular
for three main reasons: lower network delay, energy efficiency,
and better privacy protection. The promise of edge computing
is that by processing data at the network edge would result
in shorter response time, more efficient processing, and less
congestion on the network [9].

Connected and Autonomous Vehicles (CAV) are a new class
of vehicles that can both communicate with each other or
infrastructure (CV) and employ a number of systems that
enable automated driving functions (AV). The Society of
Automotive Engineers (SAE) has created a six-level hierarchy
to categorize AV’s capabilities [1], ranging from no capability
at all to full automation with no driver engagement.

The CV’s communication capability is also categorized as
Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V),
Vehicle to Cloud (V2C), Vehicle to Pedestrian (V2P) or the
all-encompassing Vehicle to Everything (V2X).

Artificial neural networks (ANNs), or connectionist systems,
are computing systems vaguely inspired by the biological
neural networks (NN) that constitute animal brains. Such
systems ”learn” (i.e. progressively improve performance on)
tasks by considering examples, generally without task-specific
programming. For example, in image recognition, they might
learn to identify images that contain cars by analyzing training
images that have been manually labeled as ”car” or ”not car”
and use those results to identify cars in future, unseen images.
This was demonstrated in the TV show Silicon Valley by a
character’s SeeFood mobile app, which determined through
an ANN if photos contained ”hotdog or not hotdog” [6].

This work presents benchmarks from deep learning net-
works running on an edge computing node assisted by a

Vision Processing Unit (VPU). Our results show that the a
mobile edge device assisted by a VPU is able to process
video using a popular NN in real-time. This is important for a
CAV, since it leaves the main CPU and memory free for V2X
communication or other tasks.

II. MOBILE EDGE COMPUTING SETUP

A. Mobile Edge Device

The Raspberry Pi (RPi) is a small, single-board computer
(SBC) [7]. Each RPi is based around a Broadcom system
on a chip (SoC), which contains the ARM CPU, RAM,
GPU and general purpose input/output controllers (GPIO).
Originally intended to just be used in teaching computer
science and basic embedded computing, but through three
different models and several iterations, has become widely
successful in home automation, industrial (edge) computing
and packaged commercial products.

The RPi3B used in our experiments contains a 1.2 GHz 64-
bit quad-core Cortex-A53 (ARMv8) CPU, 1 GB low-power
DDR2 SDRAM and four USB 2.0 ports via on-board 5-port
USB hub. It draws a maximum of 6.7 W at peak load.

B. Embedded Deep Learning Device

The Intel® Movidius™ [4] Neural Compute Stick (NCS)
is a tiny fanless, USB 3.0 Type-A deep learning device that
can be used to learn AI programming at the edge. NCS is
powered by the same low-power, high-performance Myriad 2
Vision Processing VPU) that can be found in smart security
cameras, gesture-controlled drones, industrial machine vision
equipment, and other embedded systems. Ubuntu 16.04 is
supported installed on a physical x86 64 system, or Debian
Stretch running on a Raspberry Pi 3 Model B. The Neural
Compute SDK comes with a C++ and Python (2.7/3.5) API
[5].

The Myriad 2 VPU within the NCS produces almost 100
GFLOPS using only 1 W of power and between 10 to 15
inferences per second. The VPU includes 4 Gb of low-power
DDR3 DRAM, imaging and vision accelerators, and an array
of 12 very long instruction word (VLIW) vector processors
called SHAVE processors. The entire NCS draws 2.5 W of
peak power through its USB 3.0 port. A trained Caffe-based
or TensorFlow™ CNN is compiled into an embedded neural
network that is optimized to run on the VPU inside the NCS.



Fig. 1. Google’s MobileNets Accuracy and Complexity

III. EXPERIMENTAL RESULTS

Google’s MobileNets [3] is a Convolutional Neural Network
(CNN) that uses depth-wise separable convolutions to build
light weight deep neural networks. MobileNets is tunable by
two hyper-parameters (i.e., size and depth), so that a less
powerful embedded system can trade accuracy for model
latency (i.e., time to result). The Top-1 and Top-5 accuracy in
Fig. 1 is measured against the Large Scale Visual Recognition
Challenge [8]. The results from benchmarking MobileNets on
a bare RPi3B and assisted with an NCS are shown in Fig 2.

Fig. 2. MobileNets RPi3B (FPS): CPU only vs. 1 x NCS

The next two experiments, depicted in Fig 3, compare a
RPi3B to a standalone Ubuntu Desktop. The Ubuntu 16.04
LTS system used for comparison is powered by a 3.06 GHz

Fig. 3. Frames per second (FPS) platform comparison with 1 or 2-sticks

dual-core Intel® E7600 CPU, 4 GB of DDR3/1066 MHz
RAM. The Linux kernel used during testing was 4.15.0-23.

The first experiment used video_objects.py from the
Movidius™ ncappzoo/apps, along with the six example
videos used for testing and training. The desktop achieved 9.3
frames-per-second (FPS) with a single NCS attached while
the RPi3B produced 5.7 FPS. The second experiment used
the GoogLeNet [10] CNN classifier street_cam.py with
example videos. With two sticks the desktop produced 6.6
FPS, while the RPi3B produced 3.5 FPS.

IV. DISCUSSION

In addition to a lower clock speed, the RPi3B only has
a 60 MBps USB 2.0 bus, which is ten times slower than the
theoretical maximum of a USB 3.0 bus. This greatly limits the
speed that data can flow into the NCS from the host RPi3B.

KITTI is one of the main open resources for training
CAV models and all the examples are synchronized at 10
Hz (cameras, lidar, and GPS) [2]. The bare RPi3B is not
able to keep up with real-time processing when the depth
and size increases in MobileNets. In contrast, a single NCS
can process a single 10 Hz feed in real-time at the largest
size and depth, producing the most accurate results. Since
each NCS is uniquely indexed, different feeds can be sent
to different sticks for independent processing, or independent
networks can be loaded on each stick for processing. Lab
tests at Movidius™ show linear performance increases up to 4
sticks, with validation pending for 6 to 8-stick configurations.

Neither the desktop, nor the RPi3B were able to process
video_objects.py or street_cam.py in real-time,
which means that the models used could be further optimized
to produce better results on either platform.

V. CONCLUSIONS

The results show that the RPi3B is capable of process-
ing real time video and recognizing objects using the em-
bedded deep learning device. Multiple sensor feeds, which
are prevalent in CAVs, can be processed independently by
different sticks. This frees the edge computing device’s CPU
and memory for other tasks, like real-time diagnostics, V2X
communication or Advanced Driver-Assistant Systems.
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