Demo: ThingsMigrate -

Platform-Independent

Live-Migration of JavaScript Processes

Kumseok Jung
Electrical and Computer Engineering
University of British Columbia
Vancouver, Canada
kumseok @ece.ubc.ca

Abstract—Recent trends in IoT (Internet of Things) has seen
increasing number of devices being shipped with full-fledged op-
erating systems, allowing more complex and stateful applications
written in high-level languages (e.g., JavaScript) to be run on
the edge. The benefits of pushing computations towards the edge
is that one can reduce the network costs of data transmission.
Just like any other distributed system, we need to guarantee in
IoT the availability of running processes, and thus need a live-
migration mechanism for such programs. However, well-studied
VM migration techniques are costly and impractical in IoT, due
to the resource constraints and diversity of devices. In this demo
paper, we present a demo of ThingsMigrate [1], a JavaScript
middleware for enabling live-migration of stateful JavaScript
applications in a platform-independent manner, along with a web
dashboard used to monitor and control the IoT devices.

Index Terms—Internet of Things, Edge Computing, Dis-
tributed Computing, JavaScript, Process Migration

1. MOTIVATION

In recent years, connectivity between computing devices
has rapidly grown and the number of devices connected to
the Internet has already overtaken the world population [2].
Current estimates expect the number to grow to tens of billions
by the year 2020 [3]. In the last decade, decreasing manufac-
turing costs have allowed vendors to equip the IoT devices
with full-fledged operating systems, capable of running more
complex and stateful applications that were traditionally run
on the cloud.

For many of the IoT applications, there are financial benefits
of performing computation on the edge [4]-[6]. For instance,
consider a video surveillance system, which consists of a video
camera producing a video stream, and a cloud server running
a motion detector program that consumes the video stream.
Assume that the camera produces F' frames per second, that
each frame is B bytes long, and that the motion detector
spends C clock ticks on each frame. Given N cameras, the
network cost of the system is N X F' X B bytes per second,
and the computation cost is N x F' x C' per second. Thus
the network cost grows linearly with the number of cameras,
and the cloud becomes the bottleneck when N x F x C
exceeds the clock speed of the cloud server. In contrast, if

This work is supported by a research gift from Intel, a Discovery grant and
Post-Doctoral Fellowship from the Natural Sciences and Engineering Research
Council of Canada (NSERC).

Julien Gascon-Samson
Electrical and Computer Engineering
University of British Columbia
Vancouver, Canada
julien.gascon-samson @ece.ubc.ca

Karthik Pattabiraman
Electrical and Computer Engineering
University of British Columbia
Vancouver, Canada
karthikp @ece.ubc.ca

we built the system so that image processing is performed on
the cameras themselves, we incur minimal network cost and
the computation effort is parallelized.

Given that there will be more stateful applications running
on the edge devices, and that failures can occur as in any
distributed system, we need to ensure their availability. Tra-
ditionally, guaranteeing availability involves process migra-
tion [7], [8]. However, typical VM migration techniques are
platform-specific and thus not easily applicable in the context
of a heterogeneous computer network like IoT. For instance,
migrating a process from a 32-bit little-endian device to a 64-
bit big-endian device would require additional transformation
to be performed on the snapshot; this technique soon becomes
impractical with the diversity of IoT devices. To provide a
mechanism that works on a wide range of devices, we need
a high-level, platform-independent migration technique. Our
insight is that we need to implement this at the programming
language level to achieve high efficiency. We have built such
a technique for JavaScript applications [1], since the language
is becoming very popular in the IoT domain [9], [10] - this is
the demo’s focus.

II. DESIGN

Our goal is to provide a platform-independent mechanism to
enable migration of stateful JavaScript applications. To achieve
our goal, we do not modify the underlying JavaScript VM (e.g.
Node.js) as we cannot assume all device vendors will allow
their VM to be modified or provide support for our technique.
Instead, we enable migration via code instrumentation, mak-
ing our technique applicable on any ECMAScript standard-
compliant VM. Any IoT device equipped with a JavaScript
engine can use our instrumenter to convert regular JavaScript
code into a migratable version and run it.

Challenges While the idea of capturing a program’s state
and reconstructing it on a different device is simple, there are
some challenges when implementing it at the JavaScript code
level. An arbitrary JavaScript code contains hidden program
state such as closures. Local variables captured in a closure
function cannot be accessed via the native reflection API
in JavaScript. Furthermore, we need to be able to capture
information about pending events in the event loop, which
are not directly accessible from the JavaScript code.



Related Work Previous efforts have shown that JavaScript
processes can be migrated between browsers with reasonable
overhead [11], [12]. While these papers provide important
insights about migrating a JavaScript process, their techniques
are not generally applicable to the IoT domain as they either
depend on an external migration service, or require modifying
the underlying JavaScript VM. In our work, we address these
issues to achieve platform-independent migration of JavaScript
processes between IoT devices.

III. APPROACH

We call our approach ThingsMigrate [1], and it is part of
a larger system we are building called ThingsJS [13]. At a
high level, we are converting a program with hidden states
into a semantically equivalent program without any hidden
states, and then capturing and reconstructing the program at
the destination device.

Instrumentation The main purpose of instrumenting input
code is to expose the hidden state and make it accessible for
capturing in a snapshot. We do this by injecting a Scope object
into each function to track its local state, and constructing
a Scope Tree. Each node in the tree is updated whenever a
reference is updated; for example, when a variable is assigned
a new value. Thus we maintain an explicit up-to-date copy
of the internal heap. We also intercept all the timer events to
track the state of the event queue. The instrumented program
is then executed as a child process of the ThingsJS runtime.

Serialization When executed, the instrumented program
connects to the Pub/Sub (Publish/Subscribe) service and it
can exchange messages with other devices. Upon receiving a
snapshot command, a running process produces a snapshot
of itself as a JSON string and then publishes it. The JSON
snapshot is picked up by the target device for restoration.

Restoration Upon receiving a snapshot, a ThingsJS runtime
traverses the Scope Tree and generates code that reconstructs
the program state. All the closures and transient objects are
restored at the beginning of the resumed program, and the
code retains its original structure. The generated program is
then run as a child process.

IV. IMPLEMENTATION

ThingsMigrate is written as an NPM module and can be in-
stalled via the NPM command npm install things-js.
The module consists of an API for performing code instru-
mentation and restoration, a CLI (Command Line Interface)
for starting a ThingsJS runtime, and a web dashboard for mon-
itoring and controlling the devices on the network. A ThingsJS
runtime, or worker, is a Node.js daemon that connects to
the Pub/Sub server and waits for incoming messages. A user
can send control messages through the Pub/Sub interface to
run, pause, and migrate a program. All the communication
happens via the Pub/Sub server, which can be started using
the CLI. While the CLI provides commands to run, pause,
and migrate a program across the workers in the network, the
web dashboard’s GUI is easier to use and will be primarily
used in the demo.

Fig. 1. Screenshot of the Web Dashboard

V. DEMO SCRIPT

Using the CLI command things—js dash, we start the
web dashboard server. By default, it binds to localhost
and listens on port 3000. We open the web dashboard client
application on a browser. Figure 1 is a screenshot of the home
page. From the home page, we can (1) view the list of devices
and their status, (2) select a device to monitor its resource
usage on a live graph, and (3) send commands to run, pause,
and migrate JavaScript programs from one device to another.
A demo video and code has been made publicly available at
the Github repository for ThingsJS !.

We set up 3 different devices: a Xeon ES5 server, Raspberry
Pi 3 Model B, and a Raspberry Pi Zero. Each device runs a
different compilation of Node.js. On each device, we launch
a Things]S runtime using the CLI command things-7js
worker CONFIG where CONFIG is a JSON file containing
the Pub/Sub service URL. Upon start, the ThingsJS runtime
publishes its status at topic device-registry to which
the web client is subscribed to. The device status on the web
dashboard is updated to display that the device is now active.

From the list of devices, we select the cloud server and
run the video-streamer. js program, which reads a data
stream from a video source such as a webcam or a file
and publishes the stream. The web dashboard consumes the
stream and displays it on the screen as a Motion JPEG. We
then run the motion-detector. js program on the Pi 3.
It consumes the stream, stores each frame in a temporary
buffer, and performs image differencing on subsequent frames
to detect motion. The difference images are also published
as a video stream and displayed on the dashboard. Upon
detecting significant change between the frames, the program
publishes an alarm message. While it is running, we can
observe the increase in CPU usage on the live-graph. Since
motion—-detector. js does not involve a local resource
(i.e. camera), it can be run on any device. We select the
Pi Zero as our migration target and then click on the mi-
grate button. After a brief pause, Pi Zero starts running
motion-detector.js and we observe that it continues
from the last video frame processed on Pi 3. The CPU usage
of Pi Zero surges up on the live graph just as it drops to O for
Pi 3, as Pi 3 becomes idle and Pi Zero becomes busy.

Thttps://github.com/karthikp-ubc/ThingsJS



[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

REFERENCES

J. Gascon-Samson, K. Jung, S. Goyal, A. Rezaiean-Asel, and
K. Pattabiraman, “ThingsMigrate: Platform-Independent Migration of
Stateful JavaScript IoT Applications,” in 32nd European Conference
on Object-Oriented Programming (ECOOP 2018), ser. Leibniz
International Proceedings in Informatics (LIPIcs), T. Millstein,
Ed., vol. 109. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018, pp. 18:1-18:33. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2018/9223

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.
“Programming the internet of things with nodejs an,”
https://www.gartner.com/newsroom/id/3165317, 2018.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

J. Wang, J. Pan, and F. Esposito, “Elastic urban video
surveillance system using edge computing,” in Proceedings of
the Workshop on Smart Internet of Things, ser. SmartloT *17. New
York, NY, USA: ACM, 2017, pp. 7:1-7:6. [Online]. Available:
http://doi.acm.org/10.1145/3132479.3132490

H. Sun, X. Liang, and W. Shi, “Vu: Video usefulness and its application
in large-scale video surveillance systems: An early experience,” in
Proceedings of the Workshop on Smart Internet of Things, ser.
SmartloT °17. New York, NY, USA: ACM, 2017, pp. 6:1-6:6.
[Online]. Available: http://doi.acm.org/10.1145/3132479.3132485

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, ser. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 273-286. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251223

M. Melo, P. Maciel, J. Araujo, R. Matos, and C. Arajo, “Availability
study on cloud computing environments: Live migration as a reju-
venation mechanism,” in 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 2013,
pp. 1-6.

S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-
performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80-83, Nov 2010.

J. Lin and K. El Gebaly, “The future of big data is... javascript?” I[EEE
Internet Computing, vol. 20, no. 5, pp. 82-88, 2016.

J. T. K. Lo, E. Wohlstadter, and A. Mesbah, “Imagen: Runtime migration
of browser sessions for javascript web applications,” in Proceedings of
the 22Nd International Conference on World Wide Web, ser. WWW *13.
New York, NY, USA: ACM, 2013, pp. 815-826.

J.-w. Kwon and S.-M. Moon, “Web application migration with closure
reconstruction,” in Proceedings of the 26th International Conference on
World Wide Web, ser. WWW 17, Geneva, Switzerland, 2017, pp. 133—
142.

J. Gascon-Samson, M. Rafiuzzaman, and K. Pattabiraman, “Thingsjs:
Towards a flexible and self-adaptable middleware for dynamic and
heterogeneous iot environments,” in Proceedings of the 4th Workshop
on Middleware and Applications for the Internet of Things, ser. M4loT
’17, 2017, pp. 11-16.



