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Research problem CAR

 ADAS, SLAM, and smart cities required image or video data from public places

 These data may contain sensitive personal identifying data
* Any using or sharing these raw datasets can have legal implications
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Edge Mask: Goals and objectives

d Privacy protection of individuals in video data
= Blurring sensitive information

= Undesired object removal
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Video Inpainting
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Background

What is optical flow?
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Flying chair dataset
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llg et al. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks, CVPR 2018
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Number of Networks

1 2 3 4
Architecture S SS SSS
Runtime Tms | 14ms | 20ms -
EPE 4.55 | 3.22 | 3.12
Architecture S SS
Runtime 18ms | 37ms - -
EPE 3.79 | 2.56
Architecture C csS CSS CSSS
Runtime 17ms | 24ms | 31ms | 36ms
EPE 3.62 | 265 | 251 | 2.49
Architecture C CS CSS
Runtime 33ms | 51ms | 69ms -
EPE 3.04 | 2.20 2.10

Background

Average EPE
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llg et al. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks, CVPR 2018
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Contributions CAR

J System Level
* The first approach that leverages both object blurring and removal technique
* An edge-based real-time privacy preserving framework

* Object segmentation without requiring complex network architectures

A Algorithm Level
* Tracking camera velocity and direction based on optical flow for static object segmentation

* Generating object mask for video inpainting based on optical flow and Mask R-CNN
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High-Level Architecture

Q Edge-Intelligence
J Application Programming Interface

1 Security Layer
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Algorithm Design CAR

Dynamic object segmentation and blurring Static object segmentation and blurring

*  FlowNet2.0 * Mask R-CNN
e MBD  MBD
Congested scene analysis Video inpainting
* FlowNet2.0  Mask R-CNN
e MBD e MBD
* FlowNet2.0

 Deep Flow Guided video inpainting
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Dynamic Object Segmentation

“Zhang et al. Minimum Barrier Salient Object Detection at 80 FPS”
* Original image

e Optical flow
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Dynamic Object Segmentation

SHEY) = Z d(F!, F})
‘v/FteFt

“d” stands for Minimum Barrier Distance (MBD) Transform

Br(m) = max Z(m(i)) — m’”inz(w(z')).

Connected and Autonomous dRiving Laboratory

13



Static Object Segmentation

=

1- Find the static background region inpainting -

My = {My o My} e

My = My & MBD s,

Read-Frame-Delay
Flow-Extraction
Model-Inference-Delay
Forward-Propagation
Backward-Propagation
Result-Output-Delay

0 200 400 600 800
Latency(ms)

The background region = M,

2- Move the static object masks generated by Mask R-CNN based on the
background velocity and direction.
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Video Inpainting CAR

d Video inpainting is performed in offline mode

J The required inputs are:

o Video Frames
o Object Masks
* Generated by Mask RCNN and “MBD”

o Objects’ Optical flows
* Generated by FlowNet2.0 |
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Video Inpainting -
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(a) Deep Flow Completion Network (DFC-Net)

forward propagation

_ N

backward propagation
(1) Flow Guided Pixel Propagation

. known pixel D not connected to a known pixel = flow guided warping

Xu et al. Deep Flow-Guided Video Inpainting, CVPR 2019
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Video Inpainting

JObject recognition for parallel video inpainting

= Object label
= Color histogram
" Object direction
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Video Inpainting -
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Experiment Setup

J Dataset
DAVIS 2016
D Hardware setu P Hardware  Model | Memory
GPU NVIDIA GeForce GTX 1060 3G
VPU Intel Neural Compute Stick 2 -
D M d | Model Parameter Value
odel setu Backbone ResNet101
p Mask RCNN Pretrained Weights | COCO Dataset
Backbone ResNet101
Inpaintin Flow Extraction FlowNet2
p g Propagation Bidirectional
Kernel Enlarged 50 or 70
Mask Enlarged YES
Backbone ResNet101
Flownet2.0 Model FlowNet2.0
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1 The quality evaluation

Evaluation
Approach Kernel 70  Kernel 50
Xu et al. [17] 27.838 28.011
EdgeMask 27.851 28.026

J The computational time based on a single frame
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Approach Object blurring

Object removal

Frome et al. [6] 10.1s

Flores et al. [5] - 31.6s
Agrawal et al. [3] 12s -

Nodari et al. [12] - 21.4s
EdgeMask 80ms 1.16s
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Evaluation
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Evaluation

d  GPU power

The GPU power for parallel and serial computing units (#frames == 280)
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Discussion & Future work

J Neural network pruning for video inpainting algorithm

J Evaluate in more realistic scenarios

1 Generality of EdgeMask

EdgeMask workflow can generalize to many other identification tasks
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