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Edge Computing

 Edge computing relieves the pressure of cloud and reduces the latency by 
taking the burden of computation away from remote data center (the Cloud) 
to computation nodes (the Edge) near those IoT devices.
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Cloud → Edge



Complexity in programming

 Edge computing introduces complexity in developing efficient applications 
on IoT devices
– More computation levels are taken into consideration
– Computation nodes are geo-distributed
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Cloud → Edge



Various scenarios

 Different IoT applications vary a lot.

Most existing research approaches can only handle one of those typical 
scenarios, while real-world applications always involve multiple of them.
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Collaboration among IoT owners

 IoT devices are deployed for multiple purposes.

 Data from the same IoT device may be used in different tasks.
 One task may involve different kinds of IoT devices.
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Software development on Linux

 Files
– Users manage and share data blocks by file.

 Commands
– Programmers care more about the “format” instead of the specific “content” of input files

when developing.
 Shell scripts

– Scripts are composed of pre-defined commands.
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 Streams
– Users manage and share data sequences by stream.

 Operators
– Programmers care more about the “format” instead of the specific “content” of input 

streams when developing.
 Applications

– Applications are composed of pre-defined operators.
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Stream design: types

 Different types of streams
– Primitive stream: generated directly from endpoint devices.
– Virtual stream: generated on demand by any node in the system.
– Generated stream: generated by operators (the input streams are called parent streams).
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Stream design: windows

Windows
– Widely adopted in traditional distributed computing frameworks.
– Define how data will be aggregated in physical nodes.
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Operator design

 Reshaping operators
– Define how to organize existing data-sequences, without changing the data inside.
– Examples: Union, windowing operations
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Operator design

 Computation operators
– Generate new data from input streams with functions.

 Functions access data through a standard set of APIs
– Map-style functions: getNext()
– Reduce-style functions: getWindow()
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Grouping method

 Reorganize data-sequences
– Similar to keyBy/GroupByKey transformations in traditional big data frameworks
– Grouping provides spacial partitions (Windows generate temporal slices).
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Stream sharing

 Each stream has a unique owner.
– The owner is able to share the stream to other users.
– Those users are allowed to build new streams from it, but cannot modify or delete the 

original stream.
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Architecture overview

 Endpoint node
– IoT & Cloud
– Provide primitive streams

 Computation node
– Provide virtual streams and generated streams

Monitor node
– Locates in the cloud, maintaining the metadata of streams
– Provide services to interact with streams

19

Owner B
O1 O2

S4S1 S2 S2

Owner A

S3

(a) Job description

Monitor Node-B

Endpoint Node

Endpoint Node

Computation Node

Node 1

Node 2

Node 3

Node 4

A#1

A#2

A#3

B#1

B-Cloud

Monitor Node-A

(b) Three kinds of nodes in EStream

Metadata of Stream S1~S4
Endpoint nodes

Computation nodes

Monitor nodes

Data-sequences in Stream S1~S4



Stream creation

 Necessary information to create a stream in the system
– Primitive stream: a list of endpoint devices / a list of areas
– Virtual stream: its generation algorithm
– Generated stream: its parent streams

 Find parent streams for a generated stream
– Ask their monitor nodes for help

• Primitive stream: locate devices / areas on the list
• Virtual stream: create it on demand
• Generated stream: recursively find its parents

– Caching techniques help to accelerate the procedure
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Request propagation

 Direction to deliver data-sequences
– Sinked streams: adopt the intuitive direction towards the 

sink node
– Other streams: transmit the result to its monitor node

 Location that each data-sequence first appears 
in the system
– Map-style functions: where the input data first appears 

in the stream
– Reduce-style functions: the nearest common ancestor 

node is used to collect the data in the same window
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Decentralized scheduling

 Target: balance the lifetime of packages in 
the same stream.
– Nodes prefer to compute data packages with a 

larger transmission latency in the same stream.
– The algorithm selects to push the computation 

pressure backwards to the data sources.
– Merge computation to improve the locality of data.

 Both of data sources and sinks have 
“attraction” to the workload
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Experimental setup

 Default network topology

 Test case: Smart traffic system
– Job x: vehicle detection
– Job a: license plate numbers recognition (long-lasting job)
– Job b: vehicle attributes recognition (emergent task)
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Access latency (ms) Number of nodes Profiling machine
Cloud 110 1 Workstation with Xeon 6148 CPU, 

256GB RAM and 4 GTX-2080Ti GPUs.
Router 15 10 PC with i7-6700K CPU, 32GB RAM 

and a GTX-1080ti GPU.
Access Point 5 100 PC with i7-6700K CPU, 32GB RAM

IoT device 0 1000 Raspberry Pi 4B with 4GB RAM



Benefits of stream sharing

 Change the job from {x+a} to {x+ab}
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Decentralized scheduling

 Evaluation settings
– 4 cloud data-centers & 50 routers
– On average: IoT ↔ 1 access point ↔ 2.9 routers ↔ cloud

 Four stages:
– Initial job: x+a
– Change to: x+a&b
– Duplicate the job
– Restore the initial settings
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Conclusion

 Edge-Stream: Stream-centric computation model
– Support various IoT scenarios
– Hide the complicated network topology from developers
– Simplify the collaboration among IoT owners

 EStream: a prototype realization of Edge-Stream
– Help to verify the benefit from the new model
– Provide a practical scheduling method
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Thank you!
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