
北京大学高能效计算与应用中心
Center for Energy-efficient Computing and Applications

Edge-Stream: a Stream Processing Approach for Distributed
Applications on a Hierarchical Edge-computing System

Xiaoyang Wang, Zhe Zhou, Ping Han, Tong Meng, Guangyu Sun, Jidong Zhai

Xiaoyang Wang
Peking University, Beijing, China

2020.11.11

Overview

Motivation

 Edge-Stream Model

 EStream Platform

 Evaluation

 Conclusion

2

Overview

Motivation
– Complexity in programming
– Various scenarios
– Collaboration among users

 Edge-Stream Model

 EStream Platform

 Evaluation

 Conclusion

3

Edge Computing

 Edge computing relieves the pressure of cloud and reduces the latency by
taking the burden of computation away from remote data center (the Cloud)
to computation nodes (the Edge) near those IoT devices.

4

Cloud → Edge

Complexity in programming

 Edge computing introduces complexity in developing efficient applications
on IoT devices
– More computation levels are taken into consideration
– Computation nodes are geo-distributed

5

Cloud → Edge

Various scenarios

 Different IoT applications vary a lot.

Most existing research approaches can only handle one of those typical
scenarios, while real-world applications always involve multiple of them.

6

IoT-Edge-Cloud Cloud-Edge-IoT IoT-Edge-IoT IoT-Edge

Cloud Cloud

Collaboration among IoT owners

 IoT devices are deployed for multiple purposes.

 Data from the same IoT device may be used in different tasks.
 One task may involve different kinds of IoT devices.

7

Self-driving techniques

Smart traffic control Public safety

AI/ML tasks

IoT devices

Overview

Motivation

 Edge-Stream Model
– Software development on Linux
– Stream and operator design in Edge-Stream model

 EStream Platform

 Evaluation

 Conclusion

8

Software development on Linux

 Files
– Users manage and share data blocks by file.

 Commands
– Programmers care more about the “format” instead of the specific “content” of input files

when developing.
 Shell scripts

– Scripts are composed of pre-defined commands.

9

cat grep

raw.txt pipe file result.txt

Shell
commands

Files

Lines

cat raw.txt | grep "hello" > result.txt

 Streams
– Users manage and share data sequences by stream.

 Operators
– Programmers care more about the “format” instead of the specific “content” of input

streams when developing.
 Applications

– Applications are composed of pre-defined operators.

10

Recog Save

Video Stream License Plate
Stream

Storage Stream

Operators

Streams

Data-sequence

Edge-Stream: stream-based model for edge computing

11

Recog Save

Video Stream License Plate
Stream

Storage Stream

Operators

Streams

Data-sequence

Video
Stream

License
Plate Stream

Processing
Servers

Cameras
Storage
Array

(Recog)

(Save)

Data-sequence

Physical system

Abstract view

Edge-Stream: stream-based model for edge computing

Stream

Data-sequences

Metadata

Type

Window

Owner

Stream design: types

 Different types of streams
– Primitive stream: generated directly from endpoint devices.
– Virtual stream: generated on demand by any node in the system.
– Generated stream: generated by operators (the input streams are called parent streams).

12

[…, 1:01, 1:02, 1:03...]

Timer Stream

(a) Primitive Stream (b) Virtual Stream

(c) Generated Stream

Video Stream

Stream design: windows

Windows
– Widely adopted in traditional distributed computing frameworks.
– Define how data will be aggregated in physical nodes.

13

(a) Fixed Window

(b) Sliding Window

① ② ③

① ② ③

Type
Window
Serializer

Stream

Data-Sequence

Metadata

Operator design

 Reshaping operators
– Define how to organize existing data-sequences, without changing the data inside.
– Examples: Union, windowing operations

14

Stream 1

Stream 2

Union

Stream 3

Operator design

 Computation operators
– Generate new data from input streams with functions.

 Functions access data through a standard set of APIs
– Map-style functions: getNext()
– Reduce-style functions: getWindow()

15

Grouping method

 Reorganize data-sequences
– Similar to keyBy/GroupByKey transformations in traditional big data frameworks
– Grouping provides spacial partitions (Windows generate temporal slices).

16

R1

R2

t2

t1

d1

d2

d3 d4

Temporal
Window

Spacial Partitions

p1

p2

p3 p4

Stream sharing

 Each stream has a unique owner.
– The owner is able to share the stream to other users.
– Those users are allowed to build new streams from it, but cannot modify or delete the

original stream.

17

Owner B
Union

Video
Stream

A-shared
Stream

B-owned
Stream

Owner A

A-owned
Stream

Overview

Motivation

 Edge-Stream Model

 EStream Platform
– Architecture overview
– Stream creation
– Request propagation
– Decentralized scheduling

 Evaluation

 Conclusion

18

Architecture overview

 Endpoint node
– IoT & Cloud
– Provide primitive streams

 Computation node
– Provide virtual streams and generated streams

Monitor node
– Locates in the cloud, maintaining the metadata of streams
– Provide services to interact with streams

19

Owner B
O1 O2

S4S1 S2 S2

Owner A

S3

(a) Job description

Monitor Node-B

Endpoint Node

Endpoint Node

Computation Node

Node 1

Node 2

Node 3

Node 4

A#1

A#2

A#3

B#1

B-Cloud

Monitor Node-A

(b) Three kinds of nodes in EStream

Metadata of Stream S1~S4
Endpoint nodes

Computation nodes

Monitor nodes

Data-sequences in Stream S1~S4

Stream creation

 Necessary information to create a stream in the system
– Primitive stream: a list of endpoint devices / a list of areas
– Virtual stream: its generation algorithm
– Generated stream: its parent streams

 Find parent streams for a generated stream
– Ask their monitor nodes for help

• Primitive stream: locate devices / areas on the list
• Virtual stream: create it on demand
• Generated stream: recursively find its parents

– Caching techniques help to accelerate the procedure

20

Where does the
input data of the

stream come from

Request propagation

 Direction to deliver data-sequences
– Sinked streams: adopt the intuitive direction towards the

sink node
– Other streams: transmit the result to its monitor node

 Location that each data-sequence first appears
in the system
– Map-style functions: where the input data first appears

in the stream
– Reduce-style functions: the nearest common ancestor

node is used to collect the data in the same window

21

The direction for
the stream to go

The location where the
stream is generated

S1

S2

O1

S1

S2

S3

S4

O1

O2

Node 2

Node 1

S1

Sensor A#2

S1

Sensor A#1

S1

Sensor A#3

S3

Sensor B#1

Decentralized scheduling

 Target: balance the lifetime of packages in
the same stream.
– Nodes prefer to compute data packages with a

larger transmission latency in the same stream.
– The algorithm selects to push the computation

pressure backwards to the data sources.
– Merge computation to improve the locality of data.

 Both of data sources and sinks have
“attraction” to the workload

22

Find more nodes to
do the computation

for the stream

1 hop

2 hops

Overview

Motivation

 Edge-Stream Model

 EStream Platform

 Evaluation

 Conclusion

23

Experimental setup

 Default network topology

 Test case: Smart traffic system
– Job x: vehicle detection
– Job a: license plate numbers recognition (long-lasting job)
– Job b: vehicle attributes recognition (emergent task)

24

Access latency (ms) Number of nodes Profiling machine
Cloud 110 1 Workstation with Xeon 6148 CPU,

256GB RAM and 4 GTX-2080Ti GPUs.
Router 15 10 PC with i7-6700K CPU, 32GB RAM

and a GTX-1080ti GPU.
Access Point 5 100 PC with i7-6700K CPU, 32GB RAM

IoT device 0 1000 Raspberry Pi 4B with 4GB RAM

Benefits of stream sharing

 Change the job from {x+a} to {x+ab}

25

x a
x b

x a

x a x
a

b

x a x
a

b

Flink 0: compute twice

Flink 1: plan in advance

Flink 2: stop and restart

x a x
a

b

EStream: stream-level sharing

Benefits of stream sharing

 Change the job from {x+a} to {x+ab}

26

x a
x b

x a

x a x
a

b

x a x
a

b

Flink 0: compute twice

Flink 1: plan in advance

Flink 2: stop and restart

x a x
a

b

EStream: stream-level sharing

Decentralized scheduling

 Evaluation settings
– 4 cloud data-centers & 50 routers
– On average: IoT ↔ 1 access point ↔ 2.9 routers ↔ cloud

 Four stages:
– Initial job: x+a
– Change to: x+a&b
– Duplicate the job
– Restore the initial settings

27

Conclusion

 Edge-Stream: Stream-centric computation model
– Support various IoT scenarios
– Hide the complicated network topology from developers
– Simplify the collaboration among IoT owners

 EStream: a prototype realization of Edge-Stream
– Help to verify the benefit from the new model
– Provide a practical scheduling method

28

Thank you!

29

 Name: Xiaoyang Wang
 Email: yaoer@pku.edu.cn
 Address: Peking University, Beijing, China

mailto:yaoer@pku.edu.cn

	Edge-Stream: a Stream Processing Approach for Distributed Applications on a Hierarchical Edge-computing System
	Overview
	Overview
	Edge Computing
	Complexity in programming
	Various scenarios
	Collaboration among IoT owners
	Overview
	Software development on Linux
	幻灯片编号 10
	幻灯片编号 11
	Stream design: types
	Stream design: windows
	Operator design
	Operator design
	Grouping method
	Stream sharing
	Overview
	Architecture overview
	Stream creation
	Request propagation
	Decentralized scheduling
	Overview
	Experimental setup
	Benefits of stream sharing
	Benefits of stream sharing
	Decentralized scheduling
	Conclusion
	Thank you!

