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ELASTICITY IN CLOUD

« What is Elasticity?

« How does Cloud Computing Control Elasticity?
o Re-active.

o Pro-active.
o Hybrid.
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ELASTICITY CONTROL IN MOBILE EDGE CLOUD
THE NECESSITY

« Most MECs applications are latency-sensitive applications.

 Limited resources with higher resource costs at the edge data
centers (EDCs).

 The stochastic nature of user mobility causes resource demand
fluctuated.

« Auctuation delays — allocated resources is not ready to use
immediately.
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ELASTICITY CONTROL IN MOBILE EDGE CLOUD
GOAL

« MECs operator’s perspective:
o Average resource utilization at EDCs.
o System stability.

« End-user’s perspective:
o Average rejected rate.
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PRO-ACTIVE ELASTIC CONTROL FRAMEWORK
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Figure 1: Components of the proposed controller.
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PRO-ACTIVE ELASTIC CONTROL FRAMEWORK

Location-aware Workload Predictor
o Multi-variate LSTM networks.

Performance Modeler
o Resources are abstracted at Pod modelled as a M/M/1/k FIFO
queue.
Resource Provisioner
o cross-evaluating the resource requirements of EDCs in a group
and determine a final number of desired resources for each EDC.
Group Load-balancer
o Weight round-robin load balancing approach.

UMEA UNIVERSITET



EXPERIMENT SETTING

« Emulated MEC:
o MEC with EDCs distributed over a metropolitan area.

 Application:
o Extremely latency-intolerant AR application.

 Workload:

o Real taxi mobility traces.

3 %, <

Figure 2: Distribution of EDCs in
San Francisco.
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EXPERIMENT SETTING

TABLE I: Group settings.

* Predefined Service Level Objectives:

GroupID EDCs
o Average Utilization =80%. " #1, #2, #3, #5,
. . #10
o Rejectionrate = 1%. 7 #3, #12, #15
#3 #11, #14
« Controller settings: # H, %, ¥, ¥,

o Pro-active Auto Scaler.
o Pro-active Auto Scaler + Group Load Balancer.
o Re-active Auto Scaler: Kubernetes HPA*.

*https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
g5
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EXPERIMENT SETTING
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EVALUATION - PERFORMANCE METRIC

« System and user-oriented metrics: recommend by SPEC*
o Under-provisioning accuracy,
o Over-provisioning accuracy,
o Under-provisioning timeshare,
o Over-provisioning timeshare,
o Instability.

*Nikolas Herbst et al., Ready for rain? A view from SPEC research on the future of cloud metrics
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How does the proposed pro-acitve controller perform
when compared to the re-active controller?

Pro-active AS +

Metric LB Pro-active AS Re-active AS
O 13.6 41.2 54
o 14.2 39.5 305.6
TU 4% 43% 5.3%
TO 2.5% 46.7% 94.1%
v 2.44% 2.8% 3.9%
Ave. resource uli- - gggq 80.5% 68.4%
lization
Rejection rate 0.02% 0.26% 0.04%
total Pods 3154 4405 5337
Avg. Pod lifetime 73.3 352 296

(minute)

Table II: The performance of the three controllers based on the elasticity
metrics.
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How does the proposed pro-acitve controller perform
when compared to the re-active controller?
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Figure 5: The scaling behavior of three controllers on EDC#1.
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How does the proposed pro-acitve controller perform
when compared to the re-active controller?
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Figure 6: Cumulative density of response times of the application in three
elastic controller settings.
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To what degree does location-awareness improve
scaling behavior?

» Conduct another experiment which a group is set with different

size k et e 1 e e
o k=1
o k= 15

,/! . (.\ \ 4"/\

(a) Groups consisting of 1 EDC only (k = 1). (b) Groups with neighboring EDCs as specified  (c) Single group consisting of all 15 EDCs (k =
in table L. 15).

Figure 7: Performance of the three studied controller configurations based on the three major elasticity metrics
when the number of neighboring EDCs is varied.
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What is the decision time of the elastic controller?

FN

Decision Time (in second)
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Figure 8: Average Decision Time of the three controllers.
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What is the impact of the two predefined threshold on
the controller’s scaling behavior?

Targeted Targeted Measured Measured
rejection resource resource rejection Total Pods
rate[ %] utilization[ % ] utilization|[ %] rate[ %]
70 74.8 0 3812
75 80.2 Te-4 3484
1 80 85.9 0.02 3154
85 90.6 0.16 2890
90 95.2 0.8 2653
95 98.2 2.7 1995
10 93.5 0.44 2753
3 80 87.2 0.05 3065
2 86.3 0.03 3113
1 85.9 0.02 3154

Table III: The scaling behavior of the proposed controller with different predefined threshold settings.
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What is the impact of the two predefined threshold on
the controller’s scaling behavior?
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(a) The targeted resource utilization is changed, while the targeted (b) The targeted rejection rate is changed, while the targeted
rejection rate is held constant at 1%. resource utilization is held constant at 80%.

Figure 9: The controller’s scaling behavior when varying the threshold settings.
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CONCLUSION

 The correlation of workload variation in physically neighboring
EDCs help improve the resource estimation.

« The Group Load-balancer further helps minimize the request
rejection rate.

« The proposed controller achieves a significant better scaling
behavior as compared against the state-of-the-art re-active
controller.

UMEA UNIVERSITET

18



THANK YOU

Contact for further discussion:
Name: Chanh Nguyen
Email: chanh@cs.umu.se
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