Pub/Sub in the Air: A Novel Data-centric Radio Supporting Robust Multicast in Edge Environments

Mohammed Elbadry, Fan Ye, Peter Milder, Yuanyuan Yang

Mohammed.Elbadry@stonybrook.edu

Stony Brook University

Motivation

- Edge devices equipped with diverse sensors become pervasive
 - Vehicles/drones: cameras, LIDARs, IMUs, radars, sonars
 - Internet-of-Things: heterogeneous sensors
- Sharing data among devices enable novel futuristic applications
 - Vehicular 360° penetrating view
 - Smart environments: augmented reality + IoT controlled via in-air hand gestures

Current Wireless Stack Falls Short

- Destination/Network must be determined before transmission
 - Latencies in discovering neighbors (i.e. station and beacon)
 - Each frame carries a destination node (MAC) address
- Multicast support is largely non-existent
 - Just broadcast, lowest base rate (1 or 6Mbps)

Challenges

- Wireless medium and environment
 - Varying reception qualities at different neighboring receivers
 - Short contact durations
- Data names may have large lengths and quantities
 - MAC header needs to be of small size.
- Data sharing is mostly one-to-many
 - Multicast without prior coordination and network formation is necessary

Data-Centric Wireless Medium Access Control

- Beaconless design
 - Eliminate latency overhead
 - highly mobile environments and dense environments
- Name-based filtering
 - Wireless frames carry data attributes (e.g., names)
- Robust multicast
 - A representative receiver requests missed frames on behalf of all consumers in aggregate form
 - Sender retransmit missing frames (retransmission decisions made in MAC for low latency)

Beaconless Design

- Why no beacon?
 - Beacons are fundamentally designed for nodes to announce their mac address for address-based communication and associate.
- How do nodes join/leave network?
 - There is no more network formation, data-centric communication benefit
- What about discovering data?
 - Discovering data is network's layer job, not MAC's.

Name-based filtering

- Hash data names into an encoding (e.g., 16 bits)
 - A thin layer between network and MAC breaks and reassembles packets
- The MAC maintains a table of desired data name encodings
 - Interests from local network layer creates entries in a pending encoding table (PET) in MAC.
 - Each incoming data frame is compared against the table for matching and passed up only if a matching exists.

Robust Multicast by Data-centric ACK (DACK)

- Frame Burst: back to back transmission of data frames of the same packet
- Aggregate feedback to notify sender of missing frames after each burst
 - Spatial and Temporal: one representative feedback frame per burst
- Notify sender of missing frames after each burst
 - Sender retransmits missed frames reported

DACK Frame and Transmission

- Each receiver prepares a DACK frame reporting sequence numbers of missing frames in a sliding window of recent *k* bursts
 - Start/end sequence numbers if multiple consecutive missing frames ("holes")
- Each receiver starts a timer, expiring after a time computed by an equation

$$T = \alpha \tau$$

- τ : #frames received (less missing, later expiration)
- α : backoff slot size measured from previous burst
- Upon timer expiration, a receiver transmits the DACK
- Upon hearing two DACKs of the current round, receiver cancels their DACK
- The sender retransmits frames requested in that DACK

Retransmission of Missing Frames

- Retransmission buffer
 - The sender has a buffer to store recently transmitted frames in a sliding window
- Retransmission Pacing
 - A missing frame might be requested in multiple DACKs
 - 2 DACKs allowed
 - >2 may occur if not overheard by all receivers
 - Simple rule: a missing frame will be retransmitted at most once in each round
 - result: 0 redundant transmissions

V-MAC Frame Format

- Three kinds of V-MAC frames
 - DACK, DATA, Interest (FC, encoding, payload, FCS)
- Interoperation issues with regular 802.11
 - When encoding field matches BSSID, sequence number will be interpreted as new source MAC address
 - "stations" created until running out of memory (good DoS tool!)
- Solution: add an 802.11 header
 - V-MAC to WiFi
 - Set BSSID to that of the receiver WiFi node; Destination to broadcast
 - Regular WiFi will receive them as broadcast in that group
 - WiFi to V-MAC
 - V-MAC passes regular WiFi broadcast to upper layer
 - Bi-directional communication achieved

V-MAC frame format

PHY header			V-MAC header		Payload		ad		FCS
						· · _ · _ · _	· · _ · _ ·	<u> </u>	— · — · -
Bytes		2	_ 1	1	2	2		2	2
DACK	FC	encoding	burst_seq	holes(n)	LE1	RE_1		• LE _n	RE _n
Bytes	Bytes 1 2 2		2						
DATA	FC	encoding	seq						

V-MAC frame format with WiFi interoperability

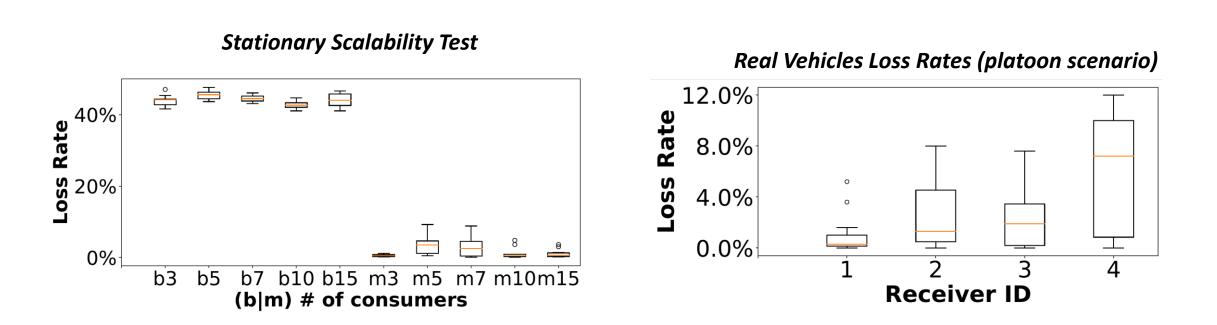
PHY header	802.11 header	V-MAC header	Payload	FCS

Testbed Experiment Setup

- Raspberry Pi + USB Wifi dongle
- v3: kernel module from scratch
- 10 trials for each experiment
 - Each trial has 1 Interest sent, then 500 data frames each with 1024 bytes payload back
 - Alternate between WiFi ad hoc and V-MAC for every trial
 - 54 Mbps
- Scenarios:
 - Stationary
 - Mobility (low, medium, and high)

Stationary testbed

Real Vehicles



RC-Cars

System Benchmarks

- Improved cross stack latency than standard stack
 - Tx path delay 73 microseconds (128x faster)
 - Rx path delay 70 microseconds (>40x faster)
- Attribute based filtering tested up to 2M concurrent entries
 - With 0.5X filtering latency compared to 802.11 MAC address
- System stability validated
 - System kept running for over 7 days transmitting 1000 frame every 3 minutes to 3 consumers.

Stationary and Mobile Evaluation

Conclusion

- Efficiency by data-based filtering
 - Eliminate discovery, group formation latencies and overhead
 - Retain any useful overheard content
- Multicast robustness by aggregate feedback and retransmission
 - Scalable and consistent low frame losses across receivers of varying reception qualities
 - Decisions made at MAC for fast actions
- Robust, efficient and fast prototypes ready for applications
 - Pi + WiFi dongles, FPGA, Rock64, Jetson, ...
 - Available at 6 different kernel versions (3.x, 4.4, 4.8, 5.0, ...)

Questions?

Joint work with Fan Ye, Peter Milder, Yuanyuan Yang

Mohammed.Elbadry@stonybrook.edu

