
Feather: Hierarchical Querying
for the Edge

Seyed Hossein Mortazavi, Mohammad Salehe,

Moshe Gabel, Eyal de Lara

Data on the Edge

Edge: Factory floor

Regional Office

Cloud

Edge: Factory floor

• Data is generated over a wide
geographic area
• Is stored near the edges

• Pushed periodically upstream to a hierarchy of
data centers

• Network properties:
• Limited bandwidth

• High latency

• Failures

Icons from flaticon.com - Freepik
2

Querying data on the Edge

Edge: Factory floor

Regional Office

Cloud

Edge: Factory floor

SELECT monitor_id,
MAX(temperature)
FROM Sensors
GROUP BY monitor_id
WHERE now() – timestamp < 600s

3

Querying Over a Distributed Hierarchical
Database

Common approaches:

➢ Process on query on the Cloud

➢ Stream Processing (continuous query)

➢ Query edge data centers

4

Feather

➢ Hybrid Approach
• Take benefit of data that exists on

intermediate nodes

• User specifies data freshness
• System guarantees data freshness criteria

• Improved query response time and total
bandwidth

5

• Get max temperature for each sensor in the last 10 minutes

SELECT monitor_id,
MAX(temperature)
FROM Sensors
GROUP BY monitor_id
WHERE now() – timestamp < 600s

Querying

LAXITY = 60s

6

• Global queries with control over staleness
and query latency

• Fault tolerance with estimates about result
completeness, coverage

Contributions

7

Idea: Relax Freshness Requirement

• User provides minimum freshness requirement (“Laxity”)

• System guarantees answer is at least as fresh (“Staleness”)

Freshness guarantee is similar to formal treatments such as ∆-atomicity (Golab et a) [27] and t-
freshness (Rahman et al.)

8

Example

Factory A

Regional
Office D

Factory C

Regional
Office E

Factory B

Cloud

K1, 2

K5, 6.5
K3, 4

K1, 2

K2, 3
K6, 7.5K7, 5.5

K2, 3

Time

1 2 3 4 5 6 7 8

Select Avg(K) from T1
Laxity = 2

Laxity

K3, 4

Factory C
push

Factory A
push

Factory B
push

Factory C
push

Factory A
push

Factory A
push

Factory B
push

9

K5, 6.5

Feather Features
• Supports: Filtering, aggregation, grouping,

ordering, and limiting of the result set.

• Coverage estimation:
• For each query return network and row

coverage estimation

• Failures:
• Best effort: Relax freshness guarantee and

provide best results
• (K1, K2, K3, K5)

• Return partial results but up-to-date results
• (K1, K2, K5)

Factory A

Regional
Office D

Factory C

Regional
Office E

Factory B

Cloud

K1
K5

K3

K1

K2

K6K7

K2
K3

10

K5

Experimental Setup for Controlled Experiments

• NYC Taxi Dataset
• 7 million taxi rides of December 2019

• (sped up x30 times for more dense data)

Wide topology Medium topology Deep topology

• Geo-distributed labelled data
• SELECT, GROUPBY, MIN queries

11

Feather Tradeoffs

 Flexible trade-off
between latency,
staleness while
guaranteeing the
freshness threshold

12

Staleness vs latency

13

Coverage

Strong agreement between the real and the estimated row coverage

14

Real world Experiment

• Geo-tagged public tweets as the dataset

• 10 datacenters from three different cloud operators spread over three continents

• Scraped a total of 1 million tweets from 6 edge cities over a one-week period from December 2019.

• Real world latencies are not uniform!

15

Real world Experiment

Latency/staleness tradeoff for queries in
the twitter experiment shows more
clusters

Coverage estimation remains very accurate

16

More results

17

Summary

• Feather: a geo-distributed, hierarchical, eventually-consistent tabular data store
that supports efficient global queries

• Feather provides a user-controlled tradeoff between latency, staleness,
bandwidth, and load on edge nodes

• Feather provides completeness (coverage) estimate.

• Future work:
• Improve the implementation for non-disjoint keys.

• To investigate dynamic control policies for the latency/staleness tradeoff

18

Questions

19

mortazavi@cs.toronto.edu

